

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	amqpy 0.13.1 documentation

amqpy Documentation

API documentation:

	amqpy.connection module

	amqpy.channel module

	amqpy.message module

	amqpy.spec module

	amqpy.proto module

	amqpy.exceptions module

Introduction

amqpy is a pure-Python AMQP 0.9.1 client library for Python >= 3.2.0 (including PyPy3) with a focus
on:

	stability and reliability

	well-tested and thoroughly documented code

	clean, correct design

	100% compliance with the AMQP 0.9.1 protocol specification

It has very good performance, as AMQP 0.9.1 is a very efficient binary protocol, but does not
sacrifice clean design and testability to save a few extra CPU cycles.

This library is actively maintained and has a zero bug policy. Please submit issues and pull
requests, and bugs will be fixed immediately.

The current API is not final, but will progressively get more stable as version 1.0.0 is approached.

Guarantees

This library makes the following guarantees:

	Semantic versioning [http://semver.org] is strictly followed

	Compatible with Python >= 3.2.0 and PyPy3 >= 2.3.1 (Python 3.2.5)

	AMQP 0.9.1 compliant

Quickstart

amqpy is easy to install, and there are no dependencies:

pip install amqpy

amqpy is easy to use:

from amqpy import Connection, Message, AbstractConsumer, Timeout

conn = Connection() # connect to guest:guest@localhost:5672 by default

ch = conn.channel()

declare an exchange and queue, and bind the queue to the exchange
ch.exchange_declare('test.exchange', 'direct')
ch.queue_declare('test.q')
ch.queue_bind('test.q', exchange='test.exchange', routing_key='test.q')

publish a few messages, which will get routed to the queue bound to the routing key "test.q"
ch.basic_publish(Message('hello world 1'), exchange='test.exchange', routing_key='test.q')
ch.basic_publish(Message('hello world 2'), exchange='test.exchange', routing_key='test.q')
ch.basic_publish(Message('hello world 3'), exchange='test.exchange', routing_key='test.q')

get a message from the queue
msg = ch.basic_get('test.q')

don't forget to acknowledge it
msg.ack()

Let’s create a consumer:

class Consumer(AbstractConsumer):
 def run(self, msg: Message):
 print('Received a message: {}'.format(msg.body))
 msg.ack()

consumer = Consumer(ch, 'test.q')
consumer.declare()

wait for events, which will receive delivered messages and call any consumer callbacks
while True:
 conn.drain_events(timeout=None)

Notes

Any AMQP 0.9.1-compliant server is supported, but RabbitMQ is our primary target. Apache Qpid is
confirmed to work, but only with “anonymous” authentication. A CRAM-MD5 auth mechanism is currently
being developed and will be released shortly.

Features

	Draining events from multiple channels Connection.drain_events()

	SSL is fully supported, it is highly recommended to use SSL when connecting to servers over the
Internet.

	Support for timeouts

	Support for manual and automatic heartbeats

	Fully thread-safe. Use one global connection and open one channel per thread.

Supports RabbitMQ extensions:

	Publisher confirms: enable with Channel.confirm_select(), then use
Channel.basic_publish_confirm

	Exchange to exchange bindings: Channel.exchange_bind() and Channel.exchange_unbind()

	Consumer cancel notifications: by default a cancel results in ChannelError being raised,
but not if an on_cancel callback is passed to basic_consume

Testing

amqpy uses the excellent tox and pytest frameworks. To run all tests, simply install a local
RabbitMQ server. No additional configuration is necessary for RabbitMQ. Then run in the project
root:

$ pip install pytest
$ py.test

Indices and Tables

	Index

	Module Index

	Search Page

 Copyright 2014, V G.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	amqpy 0.13.1 documentation

amqpy.connection module

AMQP Connections

	
class amqpy.connection.Connection(amqpy.abstract_channel.AbstractChannel)[source]

	Bases: amqpy.abstract_channel.AbstractChannel

The connection class provides methods for a client to establish a network connection to a
server, and for both peers to operate the connection thereafter

	
connected

	@property

Check if connection is connected

	Returns:	True if connected, else False

	Return type:	bool [http://docs.python.org/3.4/library/functions.html#bool]

	
server_capabilities

	@property

Get server capabilities

These properties are set only after successfully connecting.

	Returns:	server capabilities

	Return type:	dict [http://docs.python.org/3.4/library/stdtypes.html#dict]

	
sock

	@property

Access underlying TCP socket

	Returns:	socket

	Return type:	socket.socket [http://docs.python.org/3.4/library/socket.html#socket.socket]

	
channels = None

	Map of {channel_id: Channel} for all active channels

	Type:	dict[int, Channel]

	
transport = None

	

	Type:	amqpy.transport.Transport

	
__init__(host='localhost', port=5672, ssl=None, connect_timeout=None, userid='guest', password='guest', login_method='AMQPLAIN', virtual_host='/', locale='en_US', channel_max=65535, frame_max=131072, heartbeat=0, client_properties=None, on_blocked=None, on_unblocked=None)[source]

	Create a connection to the specified host

If you are using SSL, make sure the correct port number is specified (usually 5671), as the
default of 5672 is for non-SSL connections.

	Parameters:	
	host (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – host

	port (int [http://docs.python.org/3.4/library/functions.html#int]) – port

	ssl (dict or None) – dict of SSL options passed to ssl.wrap_socket() [http://docs.python.org/3.4/library/ssl.html#ssl.wrap_socket], None to disable SSL

	connect_timeout (float or None) – connect timeout

	userid (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – username

	password (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – password

	login_method (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – login method (this is server-specific); default is for RabbitMQ

	virtual_host (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – virtual host

	locale (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – locale

	channel_max (int [http://docs.python.org/3.4/library/functions.html#int]) – maximum number of channels

	frame_max (int [http://docs.python.org/3.4/library/functions.html#int]) – maximum frame payload size in bytes

	heartbeat (float [http://docs.python.org/3.4/library/functions.html#float]) – heartbeat interval in seconds, 0 disables heartbeat

	client_properties (dict or None) – dict of client properties

	on_blocked (Callable or None) – callback on connection blocked

	on_unblocked (Callable or None) – callback on connection unblocked

	
channel(channel_id=None) amqpy.channel.Channel[source]

	Create a new channel, or fetch the channel associated with channel_id if specified

	Parameters:	channel_id (int or None) – channel ID number

	Returns:	Channel

	Return type:	amqpy.channel.Channel

	
close(reply_code=0, reply_text='', method_type=method_t(class_id=0, method_id=0)) None[source]

	Close connection to the server

This method performs a connection close handshake with the server, then closes the
underlying connection.

If this connection close is due to a client error, the client may provide a reply_code,
reply_text, and method_type to indicate to the server the reason for closing the
connection.

	Parameters:	
	reply_code (int [http://docs.python.org/3.4/library/functions.html#int]) – the reply code

	reply_text (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – localized reply text

	method_type (amqpy.spec.method_t) – if close is triggered by a failing method, this is the method that
caused it

	
connect() None[source]

	Connect using saved connection parameters

This method does not need to be called explicitly; it is called by
the constructor during initialization.

Note: reconnecting invalidates all declarations (channels, queues,
consumers, delivery tags, etc.).

	
drain_events(timeout=None) None[source]

	Wait for an event on all channels

This method should be called after creating consumers in order to
receive delivered messages and execute consumer callbacks.

	Parameters:	timeout (float or None) – maximum allowed time to wait for an event

	Raises:	amqpy.exceptions.Timeout – if the operation times out

	
is_alive() bool[source]

	Check if connection is alive

This method is the primary way to check if the connection is alive.

Side effects: This method may send a heartbeat as a last resort to check if the connection
is alive.

	Returns:	True if connection is alive, else False

	Return type:	bool [http://docs.python.org/3.4/library/functions.html#bool]

	
loop(timeout=None) None[source]

	Call drain_events() continuously

	Does not raise Timeout exceptions if a timeout occurs

	Parameters:	timeout (float or None) – maximum allowed time to wait for an event

	
send_heartbeat() None[source]

	Send a heartbeat to the server

 Copyright 2014, V G.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	amqpy 0.13.1 documentation

amqpy.channel module

AMQP Channels

	
class amqpy.channel.Channel(amqpy.abstract_channel.AbstractChannel)[source]

	Bases: amqpy.abstract_channel.AbstractChannel

The channel class provides methods for a client to establish and operate an AMQP channel. All
public members are fully thread-safe.

	
CH_MODE_CONFIRM = 2

	Publisher confirm mode (RabbitMQ extension)

	
CH_MODE_NONE = 0

	Default channel mode

	
CH_MODE_TX = 1

	Transaction mode

	
active = None

	Current channel active state (flow control)

	Type:	bool

	
is_open = None

	Current channel open/closed state

	Type:	bool

	
mode = None

	Channel mode state (default, transactional, publisher confirm)

	Type:	int

	
returned_messages = None

	Returned messages that the server was unable to deliver

	Type:	queue.Queue

	
__init__(connection, channel_id=None, auto_decode=True)[source]

	Create a channel bound to a connection and using the specified numeric channel_id, and
open on the server

If auto_decode is enabled (default), incoming Message bodies will be automatically decoded
to str if possible.

	Parameters:	
	connection (amqpy.connection.Connection) – the channel’s associated Connection

	channel_id (int or None) – the channel’s assigned channel ID

	auto_decode (bool [http://docs.python.org/3.4/library/functions.html#bool]) – enable auto decoding of message bodies

	
basic_ack(delivery_tag, multiple=False) None[source]

	Acknowledge one or more messages

This method acknowledges one or more messages delivered via the Deliver or Get-Ok methods.
The client can ask to confirm a single message or a set of messages up to and including a
specific message.

	The delivery tag is valid only within the same channel that the message was received.

	Set delivery_tag to 0 and multiple to True to acknowledge all outstanding
messages.

	If the delivery_tag is invalid, the server must raise a channel exception.

	Parameters:	
	delivery_tag (int [http://docs.python.org/3.4/library/functions.html#int]) – server-assigned delivery tag; 0 means “all messages received so
far”

	multiple (bool [http://docs.python.org/3.4/library/functions.html#bool]) – if set, the delivery_tag is treated as “all messages up to and
including”

	
basic_cancel(consumer_tag, nowait=False) None[source]

	End a queue consumer

This method cancels a consumer. This does not affect already delivered messages, but it does
mean the server will not send any more messages for that consumer. The client may receive an
arbitrary number of messages in between sending the cancel method and receiving the
cancel-ok reply.

	If the queue no longer exists when the client sends a cancel command, or the consumer
has been cancelled for other reasons, this command has no effect.

	Parameters:	
	consumer_tag (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – consumer tag, valid only within the current connection and channel

	nowait (bool [http://docs.python.org/3.4/library/functions.html#bool]) – if set, the server will not respond to the method and the client
should not wait for a reply

	
basic_consume(queue='', consumer_tag='', no_local=False, no_ack=False, exclusive=False, nowait=False, callback=None, arguments=None, on_cancel=None) str[source]

	Start a queue consumer

This method asks the server to start a “consumer”, which is a transient request for messages
from a specific queue. Consumers last as long as the channel they were created on, or until
the client cancels them.

	The consumer_tag is local to a connection, so two clients can use the same consumer
tags. But on the same connection, the consumer_tag must be unique, or the server must
raise a 530 NOT ALLOWED connection exception.

	If no_ack is set, the server automatically acknowledges each message on behalf of the
client.

	If exclusive is set, the client asks for this consumer to have exclusive access to
the queue. If the server cannot grant exclusive access to the queue because there are
other consumers active, it must raise a 403 ACCESS REFUSED channel exception.

	callback must be a Callable(message) which is called for each messaged delivered by
the broker. If no callback is specified, messages are quietly discarded; no_ack should
probably be set to True in that case.

	Parameters:	
	queue (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – name of queue; if None, refers to last declared queue for this channel

	consumer_tag (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – consumer tag, local to the connection

	no_local (bool [http://docs.python.org/3.4/library/functions.html#bool]) – if True: do not deliver own messages

	no_ack (bool [http://docs.python.org/3.4/library/functions.html#bool]) – server will not expect an ack for each message

	exclusive (bool [http://docs.python.org/3.4/library/functions.html#bool]) – request exclusive access

	nowait (bool [http://docs.python.org/3.4/library/functions.html#bool]) – if set, the server will not respond to the method and the client
should not wait for a reply

	callback (Callable) – a callback callable(message) for each delivered message

	arguments (dict [http://docs.python.org/3.4/library/stdtypes.html#dict]) – AMQP method arguments

	on_cancel (Callable) – a callback callable

	Returns:	consumer tag

	Return type:	str [http://docs.python.org/3.4/library/stdtypes.html#str]

	
basic_get(queue='', no_ack=False) amqpy.message.Message or None[source]

	Directly get a message from the queue

This method is non-blocking. If no messages are available on the queue, None is returned.

	Parameters:	
	queue (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – queue name; leave blank to refer to last declared queue for the channel

	no_ack (bool [http://docs.python.org/3.4/library/functions.html#bool]) – if enabled, the server automatically acknowledges the message

	Returns:	message, or None if no messages are available on the queue

	Return type:	amqpy.message.Message or None

	
basic_publish(msg, exchange='', routing_key='', mandatory=False, immediate=False) None[source]

	Publish a message

This method publishes a message to a specific exchange. The message will be routed to
queues as defined by the exchange configuration and distributed to any active consumers when
the transaction, if any, is committed.

If publisher confirms are enabled, this method will automatically wait to receive an “ack”
from the server.

Note

Returned messages are sent back from the server and loaded into
the returned_messages queue of the channel that sent them. In
order to receive all returned messages, call loop(0) on the
connection object before checking the channel’s
returned_messages queue.

	Parameters:	
	msg (amqpy.Message) – message

	exchange (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – exchange name, empty string means default exchange

	routing_key (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – routing key

	mandatory (bool [http://docs.python.org/3.4/library/functions.html#bool]) – True: deliver to at least one queue, or return it; False: drop the
unroutable message

	immediate (bool [http://docs.python.org/3.4/library/functions.html#bool]) – request immediate delivery

	
basic_qos(prefetch_size=0, prefetch_count=0, a_global=False) None[source]

	Specify quality of service

This method requests a specific quality of service. The QoS can be specified for the
current channel or for all channels on the connection. The particular properties and
semantics of a qos method always depend on the content class semantics. Though the qos
method could in principle apply to both peers, it is currently meaningful only for the
server.

	The client can request that messages be sent in advance so that when the client finishes
processing a message, the following message is already held locally, rather than needing
to be sent down the channel. Prefetching gives a performance improvement. This field
specifies the prefetch window size in octets. The server will send a message in advance
if it is equal to or smaller in size than the available prefetch size (and also falls
into other prefetch limits). May be set to zero, meaning “no specific limit”, although
other prefetch limits may still apply. The prefetch-size is ignored if the no-ack option
is set.

	The server must ignore prefetch_size setting when the client is not processing any
messages - i.e. the prefetch size does not limit the transfer of single messages to a
client, only the sending in advance of more messages while the client still has one or
more unacknowledged messages.

	The prefetch_count specifies a prefetch window in terms of whole messages. This field
may be used in combination with the prefetch-size field; a message will only be sent in
advance if both prefetch windows (and those at the channel and connection level) allow
it. The prefetch-count is ignored if the no-ack option is set.

	The server may send less data in advance than allowed by the client’s specified
prefetch windows but it must not send more.

	Parameters:	
	prefetch_size (int [http://docs.python.org/3.4/library/functions.html#int]) – prefetch window in octets

	prefetch_count (int [http://docs.python.org/3.4/library/functions.html#int]) – prefetch window in messages

	a_global (bool [http://docs.python.org/3.4/library/functions.html#bool]) – apply to entire connection (default is for current channel only)

	
basic_recover(requeue=False) None[source]

	Redeliver unacknowledged messages

This method asks the broker to redeliver all unacknowledged messages on a specified
channel. Zero or more messages may be redelivered. This method is only allowed on
non-transacted channels.

	The server MUST set the redelivered flag on all messages that are resent.

	The server MUST raise a channel exception if this is called on a transacted channel.

	Parameters:	requeue (bool [http://docs.python.org/3.4/library/functions.html#bool]) – if set, the server will attempt to requeue the message, potentially
then delivering it to a different subscriber

	
basic_recover_async(requeue=False) None[source]

	Redeliver unacknowledged messages (async)

This method asks the broker to redeliver all unacknowledged messages on a specified
channel. Zero or more messages may be redelivered. This method is only allowed on
non-transacted channels.

	The server MUST set the redelivered flag on all messages that are resent.

	The server MUST raise a channel exception if this is called on a transacted channel.

	Parameters:	requeue (bool [http://docs.python.org/3.4/library/functions.html#bool]) – if set, the server will attempt to requeue the message, potentially
then delivering it to a different subscriber

	
basic_reject(delivery_tag, requeue) None[source]

	Reject an incoming message

This method allows a client to reject a message. It can be used to interrupt and cancel
large incoming messages,
or return untreatable messages to their original queue.

	The server SHOULD be capable of accepting and process the Reject method while sending
message content with a Deliver or Get-Ok method I.e. the server should read and process
incoming methods while sending output frames. To cancel a partially-send content, the
server sends a content body frame of size 1 (i.e. with no data except the frame-end
octet).

	The server SHOULD interpret this method as meaning that the client is unable to process
the message at this time.

	A client MUST NOT use this method as a means of selecting messages to process A
rejected message MAY be discarded or dead-lettered, not necessarily passed to another
client.

	The server MUST NOT deliver the message to the same client within the context of the
current channel. The recommended strategy is to attempt to deliver the message to an
alternative consumer, and if that is not possible, to move the message to a dead-letter
queue. The server MAY use more sophisticated tracking to hold the message on the queue and
redeliver it to the same client at a later stage.

	Parameters:	
	delivery_tag (int [http://docs.python.org/3.4/library/functions.html#int]) – server-assigned channel-specific delivery tag

	requeue (bool [http://docs.python.org/3.4/library/functions.html#bool]) – True: requeue the message; False: discard the message

	
close(reply_code=0, reply_text='', method_type=method_t(class_id=0, method_id=0)) None[source]

	Request a channel close

This method indicates that the sender wants to close the channel. This may be due to
internal conditions (e.g. a forced shut-down) or due to an error handling a specific method,
i.e. an exception When a close is due to an exception, the sender provides the class and
method id of the method which caused the exception.

	Parameters:	
	reply_code (int [http://docs.python.org/3.4/library/functions.html#int]) – the reply code

	reply_text (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – localized reply text

	method_type (amqpy.spec.method_t) – if close is triggered by a failing method, this is the method that
caused it

	
confirm_select(nowait=False) None[source]

	Enable publisher confirms for this channel (RabbitMQ extension)

The channel must not be in transactional mode. If it is, the server raises a
PreconditionFailed exception and closes the channel. Note that amqpy will
automatically reopen the channel, at which point this method can be called again
successfully.

	Parameters:	nowait (bool [http://docs.python.org/3.4/library/functions.html#bool]) – if set, the server will not respond to the method and the client
should not wait for a reply

	Raises:	PreconditionFailed – if the channel is in transactional mode

	
exchange_bind(dest_exch, source_exch='', routing_key='', nowait=False, arguments=None) None[source]

	Bind an exchange to an exchange

	Both the dest_exch and source_exch must already exist. Blank exchange names mean
the default exchange.

	A server MUST allow and ignore duplicate bindings - that is, two or more bind methods
for a specific exchanges, with identical arguments - without treating these as an error.

	A server MUST allow cycles of exchange bindings to be created including allowing an
exchange to be bound to itself.

	A server MUST not deliver the same message more than once to a destination exchange,
even if the topology of exchanges and bindings results in multiple (even infinite)
routes to that exchange.

	Parameters:	
	dest_exch (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – name of destination exchange to bind

	source_exch (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – name of source exchange to bind

	routing_key (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – routing key for the binding (note: not all exchanges use a
routing key)

	nowait (bool [http://docs.python.org/3.4/library/functions.html#bool]) – if set, the server will not respond to the method and the client
should not wait for a reply

	arguments (dict [http://docs.python.org/3.4/library/stdtypes.html#dict]) – binding arguments, specific to the exchange class

	
exchange_declare(exchange, exch_type, passive=False, durable=False, auto_delete=True, nowait=False, arguments=None) None[source]

	Declare exchange, create if needed

	Exchanges cannot be redeclared with different types. The client MUST not attempt to
redeclare an existing exchange with a different type than used in the original
Exchange.Declare method.

	This method creates an exchange if it does not already exist, and if the exchange
exists, verifies that it is of the correct and expected class.

	The server must ignore the durable field if the exchange already exists.

	The server must ignore the auto_delete field if the exchange already exists.

	If nowait is enabled and the server could not complete the method, it will raise a
channel or connection exception.

	arguments is ignored if passive is True.

	Parameters:	
	exchange (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – exchange name

	exch_type (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – exchange type (direct, fanout, etc.)

	passive (bool [http://docs.python.org/3.4/library/functions.html#bool]) – do not create exchange; client can use this to check whether an
exchange exists

	durable (bool [http://docs.python.org/3.4/library/functions.html#bool]) – mark exchange as durable (remain active after server restarts)

	auto_delete (bool [http://docs.python.org/3.4/library/functions.html#bool]) – auto-delete exchange when all queues have finished using it

	nowait (bool [http://docs.python.org/3.4/library/functions.html#bool]) – if set, the server will not respond to the method and the client should
not wait for a reply

	arguments (dict [http://docs.python.org/3.4/library/stdtypes.html#dict]) – exchange declare arguments

	Raises:	
	AccessRefused – if attempting to declare an exchange with a reserved name (amq.*)

	NotFound – if passive is enabled and the exchange does not exist

	Returns:	None

	
exchange_delete(exchange, if_unused=False, nowait=False) None[source]

	Delete an exchange

This method deletes an exchange.

	If the exchange does not exist, the server must raise a channel exception. When an
exchange is deleted, all queue bindings on the exchange are cancelled.

	If if_unused is set, and the exchange has queue bindings, the server must raise a
channel exception.

	Parameters:	
	exchange (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – exchange name

	if_unused (bool [http://docs.python.org/3.4/library/functions.html#bool]) – delete only if unused (has no queue bindings)

	nowait (bool [http://docs.python.org/3.4/library/functions.html#bool]) – if set, the server will not respond to the method and the client should
not wait for a reply

	Raises:	
	NotFound – if exchange with exchange does not exist

	PreconditionFailed – if attempting to delete a queue with bindings and if_unused is
set

	Returns:	None

	
exchange_unbind(dest_exch, source_exch='', routing_key='', nowait=False, arguments=None) None[source]

	Unbind an exchange from an exchange

	
	If the unbind fails, the server must raise a connection exception. The server must not

	attempt to unbind an exchange that does not exist from an exchange.

	Blank exchange names mean the default exchange.

	Parameters:	
	dest_exch (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – destination exchange name

	source_exch (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – source exchange name

	routing_key (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – routing key to unbind

	nowait (bool [http://docs.python.org/3.4/library/functions.html#bool]) – if set, the server will not respond to the method and the client
should not wait for a reply

	arguments (dict [http://docs.python.org/3.4/library/stdtypes.html#dict]) – binding arguments, specific to the exchange class

	
flow(active) None[source]

	Enable/disable flow from peer

This method asks the peer to pause or restart the flow of content data. This is a simple
flow-control mechanism that a peer can use to avoid overflowing its queues or otherwise
finding itself receiving more messages than it can process. Note that this method is not
intended for window control The peer that receives a request to stop sending content
should finish sending the current content, if any, and then wait until it receives a Flow
restart method.

	Parameters:	active (bool [http://docs.python.org/3.4/library/functions.html#bool]) – True: peer starts sending content frames; False: peer stops sending content
frames

	
queue_bind(queue, exchange='', routing_key='', nowait=False, arguments=None) None[source]

	Bind queue to an exchange

This method binds a queue to an exchange. Until a queue is bound it will not receive any
messages. In a classic messaging model, store-and-forward queues are bound to a dest
exchange and subscription queues are bound to a dest_wild exchange.

	The server must allow and ignore duplicate bindings without treating these as an error.

	If a bind fails, the server must raise a connection exception.

	The server must not allow a durable queue to bind to a transient exchange. If a client
attempts this, the server must raise a channel exception.

	The server should support at least 4 bindings per queue, and ideally, impose no limit
except as defined by available resources.

	If the client did not previously declare a queue, and the queue is empty, the server
must raise a connection exception with reply code 530 (not allowed).

	If queue does not exist, the server must raise a channel exception with reply code
404 (not found).

	If exchange does not exist, the server must raise a channel exception with reply code
404 (not found).

	Parameters:	
	queue (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – name of queue to bind; blank refers to the last declared queue for this
channel

	exchange (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – name of exchange to bind to

	routing_key (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – routing key for the binding

	nowait (bool [http://docs.python.org/3.4/library/functions.html#bool]) – if set, the server will not respond to the method and the client
should not wait for a reply

	arguments (dict [http://docs.python.org/3.4/library/stdtypes.html#dict]) – binding arguments, specific to the exchange class

	
queue_declare(queue='', passive=False, durable=False, exclusive=False, auto_delete=True, nowait=False, arguments=None) queue_declare_ok_t or None[source]

	Declare queue, create if needed

This method creates or checks a queue. When creating a new queue the client can specify
various properties that control the durability of the queue and its contents, and the level
of sharing for the queue. A tuple containing the queue name, message count, and consumer
count is returned, which is essential for declaring automatically named queues.

	If passive is specified, the server state is not modified (a queue will not be
declared), and the server only checks if the specified queue exists and returns its
properties. If the queue does not exist, the server must raise a 404 NOT FOUND channel
exception.

	The server must create a default binding for a newly-created queue to the default
exchange, which is an exchange of type ‘direct’.

	Queue names starting with ‘amq.’ are reserved for use by the server. If an attempt is
made to declare a queue with such a name, and the passive flag is disabled, the server
must raise a 403 ACCESS REFUSED connection exception.

	The server must raise a 405 RESOURCE LOCKED channel exception if an attempt is made to
access a queue declared as exclusive by another open connection.

	The server must ignore the auto_delete flag if the queue already exists.

RabbitMQ supports the following useful additional arguments:

	
	x-max-length (int): maximum queue size

	
	Queue length is a measure that takes into account ready messages, ignoring
unacknowledged messages and message size. Messages will be dropped or dead-lettered
from the front of the queue to make room for new messages once the limit is reached.

	Parameters:	
	queue (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – queue name; leave blank to let the server generate a name automatically

	passive (bool [http://docs.python.org/3.4/library/functions.html#bool]) – do not create queue; client can use this to check whether a queue
exists

	durable (bool [http://docs.python.org/3.4/library/functions.html#bool]) – mark as durable (remain active after server restarts)

	exclusive (bool [http://docs.python.org/3.4/library/functions.html#bool]) – mark as exclusive (can only be consumed from by this connection);
implies auto_delete

	auto_delete (bool [http://docs.python.org/3.4/library/functions.html#bool]) – auto-delete queue when all consumers have finished using it

	nowait (bool [http://docs.python.org/3.4/library/functions.html#bool]) – if set, the server will not respond to the method and the client
should not wait for a reply

	arguments (dict [http://docs.python.org/3.4/library/stdtypes.html#dict]) – exchange declare arguments

	Raises:	
	NotFound – if passive is enabled and the queue does not exist

	AccessRefused – if an attempt is made to declare a queue with a reserved name

	ResourceLocked – if an attempt is made to access an exclusive queue declared by
another open connection

	Returns:	queue_declare_ok_t(queue, message_count, consumer_count), or None if nowait

	Return type:	queue_declare_ok_t or None

	
queue_delete(queue='', if_unused=False, if_empty=False, nowait=False) int[source]

	Delete a queue

This method deletes a queue. When a queue is deleted any pending messages are sent to a
dead-letter queue if this is defined in the server configuration, and all consumers on the
queue are cancelled.

	Parameters:	
	queue (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – name of queue to delete, empty string refers to last declared queue on
this channel

	if_unused (bool [http://docs.python.org/3.4/library/functions.html#bool]) – delete only if unused (has no consumers); raise a channel
exception otherwise

	if_empty (bool [http://docs.python.org/3.4/library/functions.html#bool]) – delete only if empty; raise a channel exception otherwise

	nowait (bool [http://docs.python.org/3.4/library/functions.html#bool]) – if set, the server will not respond to the method and the client
should not wait for a reply

	Raises:	
	NotFound – if queue does not exist

	PreconditionFailed – if if_unused or if_empty conditions are not met

	Returns:	number of messages deleted

	Return type:	int [http://docs.python.org/3.4/library/functions.html#int]

	
queue_purge(queue='', nowait=False) int or None[source]

	Purge a queue

This method removes all messages from a queue. It does not cancel consumers. Purged messages
are deleted without any formal “undo” mechanism.

	On transacted channels the server MUST not purge messages that have already been sent
to a client but not yet acknowledged.

	If nowait is False, this method returns a message count.

	Parameters:	
	queue (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – queue name to purge; leave blank to refer to last declared queue for
this channel

	nowait (bool [http://docs.python.org/3.4/library/functions.html#bool]) – if set, the server will not respond to the method and the client
should not wait for a reply

	Returns:	message count (if nowait is False)

	Return type:	int or None

	
queue_unbind(queue, exchange, routing_key='', nowait=False, arguments=None) None[source]

	Unbind a queue from an exchange

This method unbinds a queue from an exchange.

	If a unbind fails, the server MUST raise a connection exception.

	The client must not attempt to unbind a queue that does not exist.

	The client must not attempt to unbind a queue from an exchange that does not exist.

	Parameters:	
	queue (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – name of queue to unbind, leave blank to refer to the last declared
queue on this channel

	exchange (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – name of exchange to unbind, leave blank to refer to default exchange

	routing_key (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – routing key of binding

	arguments (dict [http://docs.python.org/3.4/library/stdtypes.html#dict]) – binding arguments, specific to the exchange class

	
tx_commit() None[source]

	Commit the current transaction

This method commits all messages published and acknowledged in the current transaction. A
new transaction starts immediately after a commit.

	
tx_rollback() None[source]

	Abandon the current transaction

This method abandons all messages published and acknowledged in the current transaction. A
new transaction starts immediately after a rollback.

	
tx_select() None[source]

	Select standard transaction mode

This method sets the channel to use standard transactions. The client must use this method
at least once on a channel before using the Commit or Rollback methods.

The channel must not be in publish acknowledge mode. If it is, the server raises a
PreconditionFailed exception and closes the channel. Note that amqpy will
automatically reopen the channel, at which point this method can be called again
successfully.

	Raises:	PreconditionFailed – if the channel is in publish acknowledge mode

 Copyright 2014, V G.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	amqpy 0.13.1 documentation

amqpy.message module

Messages for AMQP

	
class amqpy.message.Message(amqpy.message.GenericContent)[source]

	Bases: amqpy.message.GenericContent

A Message for use with the Channel.basic_* methods

	
application_headers

	@property

Get application headers

	Returns:	application headers

	Return type:	dict [http://docs.python.org/3.4/library/stdtypes.html#dict]

	
body

	Message body (bytes or str or unicode)

	
channel

	Associated channel, set after receiving a message (amqpy.channel.Channel)

	
delivery_info

	Delivery info, set after receiving a message (dict)

	
delivery_tag

	@property

Get delivery tag

	Returns:	delivery tag

	Return type:	int [http://docs.python.org/3.4/library/functions.html#int]

	
__init__(body='', channel=None, **properties)[source]

	If body is a str, then content_encoding will automatically be set to ‘UTF-8’, unless
explicitly specified.

Example:

msg = Message('hello world', content_type='text/plain', application_headers={'foo': 7})

	Parameters:	
	body (bytes or str or unicode) – message body

	channel (amqpy.channel.Channel) – associated channel

	properties –
	content_type (shortstr): MIME content type

	content_encoding (shortstr): MIME content encoding

	application_headers: (table): Message header field table:
dict[str, str|int|Decimal|datetime|dict]

	delivery_mode: (octet): Non-persistent (1) or persistent (2)

	priority (octet): The message priority, 0 to 9

	correlation_id (shortstr) The application correlation identifier

	reply_to (shortstr) The destination to reply to

	expiration (shortstr): Message expiration specification

	message_id (shortstr): The application message identifier

	timestamp (datetime.datetime): The message timestamp

	type (shortstr): The message type name

	user_id (shortstr): The creating user id

	app_id (shortstr): The creating application id

	cluster_id (shortstr): Intra-cluster routing identifier

	
ack() None[source]

	Acknowledge message

This is a convenience method which calls self.channel.basic_ack()

	
reject(requeue) None[source]

	Reject message

This is a convenience method which calls self.channel.basic_reject()

	Parameters:	requeue (bool [http://docs.python.org/3.4/library/functions.html#bool]) – requeue if True else discard the message

 Copyright 2014, V G.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	amqpy 0.13.1 documentation

amqpy.spec module

	
amqpy.spec.FRAME_MIN_SIZE = 4096

	The default, minimum frame size that both the client and server must be able to handle

	
class amqpy.spec.FrameType[source]

	Bases: object [http://docs.python.org/3.4/library/functions.html#object]

This class contains frame-related constants

METHOD, HEADER, BODY, and HEARTBEAT are all frame type constants which make up the first byte
of every frame. The END constant is the termination value which is the last byte of every frame.

	
class amqpy.spec.basic_return_t(tuple)

	Bases: tuple [http://docs.python.org/3.4/library/stdtypes.html#tuple]

namedtuple basic_return_t(reply_code, reply_text, exchange, routing_key, message)

	
class amqpy.spec.method_t(tuple)

	Bases: tuple [http://docs.python.org/3.4/library/stdtypes.html#tuple]

namedtuple method_t(class_id, method_id)

	
class amqpy.spec.queue_declare_ok_t(tuple)

	Bases: tuple [http://docs.python.org/3.4/library/stdtypes.html#tuple]

namedtuple queue_declare_ok_t(queue, message_count, consumer_count)

 Copyright 2014, V G.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	amqpy 0.13.1 documentation

amqpy.proto module

High-level representations of AMQP protocol objects

	
class amqpy.proto.Frame[source]

	Bases: object [http://docs.python.org/3.4/library/functions.html#object]

AMQP frame

A Frame represents the lowest-level packet of data specified by the AMQP 0.9.1
wire-level protocol. All methods and messages are packed into one or more frames before being
sent to the peer.

The format of the AMQP frame is as follows:

offset: 0 1 3 7 size+7 size+8
 +------+---------+---------+-------------------+-----------+
 | type | channel | size | --- payload --- | frame-end |
 +------+---------+---------+-------------------+-----------+
size (bytes) 1 2 4 size 1

	
channel

	@property

Get frame channel number

	Returns:	channel number

	Return type:	int [http://docs.python.org/3.4/library/functions.html#int]

	
data

	raw frame data; can be manually manipulated at any time

	Type:	bytearray

	
frame_type

	@property

Get frame type

	Returns:	frame type

	Return type:	int [http://docs.python.org/3.4/library/functions.html#int]

	
payload

	@property

Get frame payload

	Returns:	payload

	Return type:	bytearray [http://docs.python.org/3.4/library/functions.html#bytearray]

	
payload_size

	@property

Get frame payload size

	Returns:	payload size

	Return type:	int [http://docs.python.org/3.4/library/functions.html#int]

	
__init__(frame_type=None, channel=0, payload=b'')[source]

	Create new Frame

Leave all three parameters as default to create an empty frame whose data can be manually
written to afterwards.

	Parameters:	
	frame_type (int [http://docs.python.org/3.4/library/functions.html#int]) – frame type

	channel (int [http://docs.python.org/3.4/library/functions.html#int]) – associated channel number

	payload (bytes or bytearray) – frame payload

	
class amqpy.proto.Method[source]

	Bases: object [http://docs.python.org/3.4/library/functions.html#object]

AMQP method

The AMQP 0.9.1 protocol specifies communication as sending and receiving “methods”. Methods
consist of a “class-id” and “method-id” and are represented by a method_t namedtuple in amqpy.
Methods are packed into the payload of a FrameType.METHOD frame, and most methods can be fully
sent in a single frame. If the method specified to be carrying content (such as a message), the
method frame is followed by additional frames: a FrameType.HEADER frame, then zero or more
FrameType.BODY frames.

The format of the FrameType.METHOD frame’s payload is as follows:

offset: 0 2 4
 +----------+-----------+-------------- - -
 | class-id | method-id | arguments...
 +----------+-----------+-------------- - -
size (bytes): 2 2 variable

The format of the FrameType.HEADER frame’s payload is as follows:

offset: 0 2 4 12 14
 +----------+--------+-----------+----------------+------------------- - -
 | class-id | weight | body size | property flags | property list...
 +----------+--------+-----------+----------------+------------------- - -
size (bytes): 2 2 8 2 variable

The format of the FrameType.BODY frame’s payload is simply raw binary data of the message
body.

	
channel_id

	

	Type:	int

	
complete

	@property

Check if the message that is carried by this method has been completely assembled,
i.e. the expected number of bytes have been loaded

This method is intended to be called when constructing a Method from incoming data.

	Returns:	True if method is complete, else False

	Return type:	bool [http://docs.python.org/3.4/library/functions.html#bool]

	
content

	

	Type:	Message or None

	
method_type

	

	Type:	amqpy.spec.method_t

	
__init__(method_type=None, args=None, content=None, channel_id=None)[source]

	

	Parameters:	
	method_type (method_t) – method type

	args (AMQPReader or AMQPWriter or None) – method args

	content (Message or None) – content

	channel_id (int or None) – the associated channel ID, if any

	
dump_body_frame(chunk_size) generator[amqpy.proto.Frame][source]

	Create a body frame

This method is intended to be called when sending frames for an already-completed Method.

	Parameters:	chunk_size (int [http://docs.python.org/3.4/library/functions.html#int]) – body chunk size in bytes; this is typically the maximum frame size - 8

	Returns:	generator of FrameType.BODY frames

	Return type:	generator[amqpy.proto.Frame]

	
dump_header_frame() amqpy.proto.Frame[source]

	Create a header frame

This method is intended to be called when sending frames for an already-completed Method.

	Returns:	FrameType.HEADER frame

	Return type:	amqpy.proto.Frame

	
dump_method_frame() amqpy.proto.Frame[source]

	Create a method frame

This method is intended to be called when sending frames for an already-completed Method.

	Returns:	FrameType.METHOD frame

	Return type:	amqpy.proto.Frame

	
load_body_frame(frame) None[source]

	Add content to partial method

This method is intended to be called when constructing a Method from incoming data.

	Parameters:	frame (amqpy.proto.Frame) – FrameType.BODY frame

	
load_header_frame(frame) None[source]

	Add header to partial method

This method is intended to be called when constructing a Method from incoming data.

	Parameters:	frame (amqpy.proto.Frame) – FrameType.HEADER frame

	
load_method_frame(frame) None[source]

	Load method frame payload data

This method is intended to be called when constructing a Method from incoming data.

After calling, self.method_type, self.args, and self.channel_id will be loaded with
data from the frame.

	Parameters:	frame (amqpy.proto.Frame) – FrameType.METHOD frame

 Copyright 2014, V G.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	amqpy 0.13.1 documentation

amqpy.exceptions module

AMQP uses exceptions to handle errors:

	Any operational error (message queue not found, insufficient access rights, etc.) results in a
channel exception.

	Any structural error (invalid argument, bad sequence of methods, etc.) results in a connection
exception.

According to the AMQP specification, an exception closes the associated channel or connection, and
returns a reply code and reply text to the client. However, amqpy will automatically re-open the
channel after a channel error.

	
exception amqpy.exceptions.Timeout[source]

	Bases: TimeoutError [http://docs.python.org/3.4/library/exceptions.html#TimeoutError]

General AMQP operation timeout

	
exception amqpy.exceptions.ContentTooLarge(reply_text=None, method_type=None, method_name=None, reply_code=None, channel_id=None)[source]

	Bases: amqpy.exceptions.RecoverableChannelError

The client attempted to transfer content larger than the server could accept at the present
time. The client may retry at a later time.

	
exception amqpy.exceptions.NoConsumers(reply_text=None, method_type=None, method_name=None, reply_code=None, channel_id=None)[source]

	Bases: amqpy.exceptions.RecoverableChannelError

When the exchange cannot deliver to a consumer when the immediate flag is set. As a result
of pending data on the queue or the absence of any consumers of the queue.

	
exception amqpy.exceptions.ConnectionForced(reply_text=None, method_type=None, method_name=None, reply_code=None, channel_id=None)[source]

	Bases: amqpy.exceptions.RecoverableConnectionError

An operator intervened to close the connection for some reason. The client may retry at some
later date.

	
exception amqpy.exceptions.InvalidPath(reply_text=None, method_type=None, method_name=None, reply_code=None, channel_id=None)[source]

	Bases: amqpy.exceptions.IrrecoverableConnectionError

The client tried to work with an unknown virtual host.

	
exception amqpy.exceptions.AccessRefused(reply_text=None, method_type=None, method_name=None, reply_code=None, channel_id=None)[source]

	Bases: amqpy.exceptions.IrrecoverableChannelError

The client attempted to work with a server entity to which it has no access due to
security settings.

	
exception amqpy.exceptions.NotFound(reply_text=None, method_type=None, method_name=None, reply_code=None, channel_id=None)[source]

	Bases: amqpy.exceptions.IrrecoverableChannelError

The client attempted to work with a server entity that does not exist.

	
exception amqpy.exceptions.ResourceLocked(reply_text=None, method_type=None, method_name=None, reply_code=None, channel_id=None)[source]

	Bases: amqpy.exceptions.RecoverableChannelError

The client attempted to work with a server entity to which it has no access because
another client is working
with it.

	
exception amqpy.exceptions.PreconditionFailed(reply_text=None, method_type=None, method_name=None, reply_code=None, channel_id=None)[source]

	Bases: amqpy.exceptions.IrrecoverableChannelError

The client requested a method that was not allowed because some precondition failed.

	
exception amqpy.exceptions.FrameError(reply_text=None, method_type=None, method_name=None, reply_code=None, channel_id=None)[source]

	Bases: amqpy.exceptions.IrrecoverableConnectionError

The sender sent a malformed frame that the recipient could not decode. This strongly implies
a programming error in the sending peer.

	
exception amqpy.exceptions.FrameSyntaxError(reply_text=None, method_type=None, method_name=None, reply_code=None, channel_id=None)[source]

	Bases: amqpy.exceptions.IrrecoverableConnectionError

The sender sent a frame that contained illegal values for one or more fields. This strongly
implies a programming error in the sending peer.

	
exception amqpy.exceptions.InvalidCommand(reply_text=None, method_type=None, method_name=None, reply_code=None, channel_id=None)[source]

	Bases: amqpy.exceptions.IrrecoverableConnectionError

The client sent an invalid sequence of frames, attempting to perform an operation that was
considered invalid by the server. This usually implies a programming error in the client.

	
exception amqpy.exceptions.ChannelNotOpen(reply_text=None, method_type=None, method_name=None, reply_code=None, channel_id=None)[source]

	Bases: amqpy.exceptions.IrrecoverableConnectionError

The client attempted to work with a channel that had not been correctly opened. This most
likely indicates a fault in the client layer.

	
exception amqpy.exceptions.UnexpectedFrame(reply_text=None, method_type=None, method_name=None, reply_code=None, channel_id=None)[source]

	Bases: amqpy.exceptions.IrrecoverableConnectionError

The peer sent a frame that was not expected, usually in the context of a content header and
body. This strongly indicates a fault in the peer’s content processing.

	
exception amqpy.exceptions.ResourceError(reply_text=None, method_type=None, method_name=None, reply_code=None, channel_id=None)[source]

	Bases: amqpy.exceptions.RecoverableConnectionError

The server could not complete the method because it lacked sufficient resources. This may be
due to the client creating too many of some type of entity.

	
exception amqpy.exceptions.NotAllowed(reply_text=None, method_type=None, method_name=None, reply_code=None, channel_id=None)[source]

	Bases: amqpy.exceptions.IrrecoverableConnectionError

The client tried to work with some entity in a manner that is prohibited by the server, due
to security settings or by some other criteria.

	
exception amqpy.exceptions.AMQPNotImplementedError(reply_text=None, method_type=None, method_name=None, reply_code=None, channel_id=None)[source]

	Bases: amqpy.exceptions.IrrecoverableConnectionError

The client tried to use functionality that is not implemented in the server.

	
exception amqpy.exceptions.InternalError(reply_text=None, method_type=None, method_name=None, reply_code=None, channel_id=None)[source]

	Bases: amqpy.exceptions.IrrecoverableConnectionError

The server could not complete the method because of an internal error. The server may
require intervention by an operator in order to resume normal operations.

 Copyright 2014, V G.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	amqpy 0.13.1 documentation

 Python Module Index

 a

 			

 		
 a	

 	[image: -]
 	
 amqpy	

 	
 	
 amqpy.channel	

 	
 	
 amqpy.connection	

 	
 	
 amqpy.consumer	

 	
 	
 amqpy.exceptions	

 	
 	
 amqpy.message	

 	
 	
 amqpy.proto	

 	
 	
 amqpy.spec	

 Copyright 2014, V G.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	amqpy 0.13.1 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | I
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U

_

 	

 	__init__() (amqpy.channel.Channel method)

 	

 	(amqpy.connection.Connection method)

 	(amqpy.message.Message method)

 	(amqpy.proto.Frame method)

 	(amqpy.proto.Method method)

A

 	

 	AccessRefused

 	ack() (amqpy.message.Message method)

 	active (amqpy.channel.Channel attribute)

 	AMQPNotImplementedError

 	amqpy.channel (module)

 	amqpy.connection (module)

 	

 	amqpy.consumer (module)

 	amqpy.exceptions (module)

 	amqpy.message (module)

 	amqpy.proto (module)

 	amqpy.spec (module)

 	application_headers (amqpy.message.Message attribute)

B

 	

 	basic_ack() (amqpy.channel.Channel method)

 	basic_cancel() (amqpy.channel.Channel method)

 	basic_consume() (amqpy.channel.Channel method)

 	basic_get() (amqpy.channel.Channel method)

 	basic_publish() (amqpy.channel.Channel method)

 	basic_qos() (amqpy.channel.Channel method)

 	

 	basic_recover() (amqpy.channel.Channel method)

 	basic_recover_async() (amqpy.channel.Channel method)

 	basic_reject() (amqpy.channel.Channel method)

 	basic_return_t (class in amqpy.spec)

 	body (amqpy.message.Message attribute)

C

 	

 	CH_MODE_CONFIRM (amqpy.channel.Channel attribute)

 	CH_MODE_NONE (amqpy.channel.Channel attribute)

 	CH_MODE_TX (amqpy.channel.Channel attribute)

 	channel (amqpy.message.Message attribute)

 	

 	(amqpy.proto.Frame attribute)

 	Channel (class in amqpy.channel)

 	channel() (amqpy.connection.Connection method)

 	channel_id (amqpy.proto.Method attribute)

 	ChannelNotOpen

 	channels (amqpy.connection.Connection attribute)

 	

 	close() (amqpy.channel.Channel method)

 	

 	(amqpy.connection.Connection method)

 	complete (amqpy.proto.Method attribute)

 	confirm_select() (amqpy.channel.Channel method)

 	connect() (amqpy.connection.Connection method)

 	connected (amqpy.connection.Connection attribute)

 	Connection (class in amqpy.connection)

 	ConnectionForced

 	content (amqpy.proto.Method attribute)

 	ContentTooLarge

D

 	

 	data (amqpy.proto.Frame attribute)

 	delivery_info (amqpy.message.Message attribute)

 	delivery_tag (amqpy.message.Message attribute)

 	drain_events() (amqpy.connection.Connection method)

 	

 	dump_body_frame() (amqpy.proto.Method method)

 	dump_header_frame() (amqpy.proto.Method method)

 	dump_method_frame() (amqpy.proto.Method method)

E

 	

 	exchange_bind() (amqpy.channel.Channel method)

 	exchange_declare() (amqpy.channel.Channel method)

 	

 	exchange_delete() (amqpy.channel.Channel method)

 	exchange_unbind() (amqpy.channel.Channel method)

F

 	

 	flow() (amqpy.channel.Channel method)

 	Frame (class in amqpy.proto)

 	FRAME_MIN_SIZE (in module amqpy.spec)

 	frame_type (amqpy.proto.Frame attribute)

 	

 	FrameError

 	FrameSyntaxError

 	FrameType (class in amqpy.spec)

I

 	

 	InternalError

 	InvalidCommand

 	InvalidPath

 	

 	is_alive() (amqpy.connection.Connection method)

 	is_open (amqpy.channel.Channel attribute)

L

 	

 	load_body_frame() (amqpy.proto.Method method)

 	load_header_frame() (amqpy.proto.Method method)

 	

 	load_method_frame() (amqpy.proto.Method method)

 	loop() (amqpy.connection.Connection method)

M

 	

 	Message (class in amqpy.message)

 	Method (class in amqpy.proto)

 	method_t (class in amqpy.spec)

 	

 	method_type (amqpy.proto.Method attribute)

 	mode (amqpy.channel.Channel attribute)

N

 	

 	NoConsumers

 	NotAllowed

 	

 	NotFound

P

 	

 	payload (amqpy.proto.Frame attribute)

 	payload_size (amqpy.proto.Frame attribute)

 	

 	PreconditionFailed

Q

 	

 	queue_bind() (amqpy.channel.Channel method)

 	queue_declare() (amqpy.channel.Channel method)

 	queue_declare_ok_t (class in amqpy.spec)

 	

 	queue_delete() (amqpy.channel.Channel method)

 	queue_purge() (amqpy.channel.Channel method)

 	queue_unbind() (amqpy.channel.Channel method)

R

 	

 	reject() (amqpy.message.Message method)

 	ResourceError

 	

 	ResourceLocked

 	returned_messages (amqpy.channel.Channel attribute)

S

 	

 	send_heartbeat() (amqpy.connection.Connection method)

 	server_capabilities (amqpy.connection.Connection attribute)

 	

 	sock (amqpy.connection.Connection attribute)

T

 	

 	Timeout

 	transport (amqpy.connection.Connection attribute)

 	tx_commit() (amqpy.channel.Channel method)

 	

 	tx_rollback() (amqpy.channel.Channel method)

 	tx_select() (amqpy.channel.Channel method)

U

 	

 	UnexpectedFrame

 Copyright 2014, V G.
 Created using Sphinx 1.3.5.

 _modules/amqpy/connection.html

 Navigation

 		
 index

 		
 modules |

 		amqpy 0.13.1 documentation »

 		Module code »

 Source code for amqpy.connection

"""AMQP Connections
"""
from __future__ import absolute_import, division, print_function

__metaclass__ = type
import logging
import socket
from array import array
import pprint
import six
from threading import Event, Thread, Lock

from . import __version__, compat
from .proto import Method
from .method_io import MethodReader, MethodWriter
from .serialization import AMQPWriter
from .abstract_channel import AbstractChannel
from .channel import Channel
from .exceptions import ResourceError, AMQPConnectionError, Timeout, error_for_code
from .transport import create_transport
from . import spec
from .spec import method_t
from .concurrency import synchronized_connection
from .login import login_responses

__all__ = ['Connection']

client property info that gets sent to the server on connection startup
LIBRARY_PROPERTIES = {
 'product': 'amqpy',
 'product_version': __version__,
 'version': __version__,
 'capabilities': {},
}

log = logging.getLogger('amqpy')

compat.patch()

[docs]class Connection(AbstractChannel):
 """The connection class provides methods for a client to establish a network connection to a
 server, and for both peers to operate the connection thereafter
 """

[docs] def __init__(self, host='localhost', port=5672, ssl=None, connect_timeout=None,
 userid='guest', password='guest', login_method='AMQPLAIN', virtual_host='/',
 locale='en_US',
 channel_max=65535, frame_max=131072,
 heartbeat=0,
 client_properties=None,
 on_blocked=None, on_unblocked=None):
 """Create a connection to the specified host

 If you are using SSL, make sure the correct port number is specified (usually 5671), as the
 default of 5672 is for non-SSL connections.

 :param str host: host
 :param int port: port
 :param ssl: dict of SSL options passed to :func:`ssl.wrap_socket()`, None to disable SSL
 :param float connect_timeout: connect timeout
 :param str userid: username
 :param str password: password
 :param str login_method: login method (this is server-specific); default is for RabbitMQ
 :param str virtual_host: virtual host
 :param str locale: locale
 :param int channel_max: maximum number of channels
 :param int frame_max: maximum frame payload size in bytes
 :param float heartbeat: heartbeat interval in seconds, 0 disables heartbeat
 :param client_properties: dict of client properties
 :param on_blocked: callback on connection blocked
 :param on_unblocked: callback on connection unblocked
 :type connect_timeout: float or None
 :type client_properties: dict or None
 :type ssl: dict or None
 :type on_blocked: Callable or None
 :type on_unblocked: Callable or None
 """
 log.debug('amqpy {} Connection.__init__()'.format(__version__))
 self.conn_lock = Lock()

 #: Map of `{channel_id: Channel}` for all active channels
 #:
 #: :type: dict[int, Channel]
 self.channels = {} # dict of {channel_id int: Channel}

 # the connection object itself is treated as channel 0
 super(Connection, self).__init__(self, 0) # also sets channels[0] = self

 # instance variables
 #: :type: amqpy.transport.Transport
 self.transport = None
 self.method_reader = None
 self.method_writer = None
 self._wait_tune_ok = None

 # properties set in the start method, after a connection is established
 self.version_major = 0
 self.version_minor = 0
 self.server_properties = {}
 self.mechanisms = []
 self.locales = []

 # properties set in the Tune method
 self.channel_max = channel_max
 self.frame_max = frame_max
 if six.PY2:
 self._avail_channel_ids = array(b'H', range(self.channel_max, 0, -1))
 else:
 self._avail_channel_ids = array('H', range(self.channel_max, 0, -1))
 self._heartbeat_final = 0 # final heartbeat interval after negotiation
 self._heartbeat_server = None

 # save connection parameters
 self._host = host
 self._port = port
 self._connect_timeout = connect_timeout
 self._ssl = ssl
 self._userid = userid
 self._password = password
 self._login_method = login_method
 self._virtual_host = virtual_host
 self._locale = locale
 self._heartbeat_client = heartbeat # original heartbeat interval value proposed by client
 self._client_properties = client_properties

 # callbacks
 self.on_blocked = on_blocked
 self.on_unblocked = on_unblocked

 # heartbeat
 self._close_event = Event()
 self._heartbeat_thread = None

 self.connect()

[docs] def connect(self):
 """Connect using saved connection parameters

 This method does not need to be called explicitly; it is called by
 the constructor during initialization.

 Note: reconnecting invalidates all declarations (channels, queues,
 consumers, delivery tags, etc.).
 """
 # start the connection; this also sends the connection protocol header
 self.connection = self # AbstractChannel.connection
 self.transport = create_transport(self._host, self._port, self._connect_timeout,
 self.frame_max, self._ssl)

 # create global instances of `MethodReader` and `MethodWriter` which can be used by all
 # channels
 self.method_reader = MethodReader(self.transport)
 self.method_writer = MethodWriter(self.transport, self.frame_max)

 # wait for server to send the 'start' method
 self.wait(spec.Connection.Start)

 # create 'login response' to send to server
 login_response = login_responses[self._login_method](self._userid, self._password)

 # reply with 'start-ok' and connection parameters
 # noinspection PyArgumentList
 client_props = dict(LIBRARY_PROPERTIES, **self._client_properties or {})
 self._send_start_ok(client_props, self._login_method, login_response, self._locale)

 self._wait_tune_ok = True
 while self._wait_tune_ok:
 self.wait_any([spec.Connection.Secure, spec.Connection.Tune])

 self._send_open(self._virtual_host)

 # set up automatic heartbeats, if requested for:
 if self._heartbeat_final:
 self._close_event.clear()
 log.debug('Start automatic heartbeat thread')
 thr = Thread(target=self._heartbeat_run,
 name='amqp-HeartBeatThread-%s' % id(self))
 thr.daemon = True
 thr.start()
 self._heartbeat_thread = thr

 @property
 def last_heartbeat_recv(self):
 return self.transport.last_heartbeat_received

 @property
 def last_heartbeat_sent(self):
 return self.transport.last_heartbeat_sent

 @property
 def connected(self):
 """Check if connection is connected

 :return: True if connected, else False
 :rtype: bool
 """
 return bool(self.transport and self.transport.connected)

 @property
 def sock(self):
 """Access underlying TCP socket

 :return: socket
 :rtype: socket.socket
 """
 if self.transport and self.transport.sock:
 return self.transport.sock

 @property
 def server_capabilities(self):
 """Get server capabilities

 These properties are set only after successfully connecting.

 :return: server capabilities
 :rtype: dict
 """
 return self.server_properties.get('capabilities') or {}

 @synchronized_connection()
[docs] def channel(self, channel_id=None):
 """Create a new channel, or fetch the channel associated with `channel_id` if specified

 :param channel_id: channel ID number
 :type channel_id: int or None
 :return: Channel
 :rtype: amqpy.channel.Channel
 """
 try:
 return self.channels[channel_id]
 except KeyError:
 return Channel(self, channel_id)

[docs] def send_heartbeat(self):
 """Send a heartbeat to the server
 """
 self.transport.send_heartbeat()

[docs] def is_alive(self):
 """Check if connection is alive

 This method is the primary way to check if the connection is alive.

 Side effects: This method may send a heartbeat as a last resort to check if the connection
 is alive.

 :return: True if connection is alive, else False
 :rtype: bool
 """
 if self.transport:
 return self.transport.is_alive()
 else:
 return False

 def _wait_any(self, timeout=None):
 """Wait for any event on the connection (for any channel)

 When a method is received on the channel, it is delivered to the
 appropriate channel incoming method queue

 :param float timeout: timeout
 :return: method
 :rtype: amqpy.proto.Method
 """
 # check the method queue of each channel
 for ch_id, channel in self.channels.items():
 if channel.incoming_methods:
 return channel.incoming_methods.pop(0)

 # do a blocking read for any incoming method
 method = self.method_reader.read_method(timeout)
 return method

[docs] def drain_events(self, timeout=None):
 """Wait for an event on all channels

 This method should be called after creating consumers in order to
 receive delivered messages and execute consumer callbacks.

 :param timeout: maximum allowed time to wait for an event
 :type timeout: float or None
 :raise amqpy.exceptions.Timeout: if the operation times out
 """
 method = self._wait_any(timeout)

 assert isinstance(method, Method)
 #: :type: amqpy.Channel
 channel = self.channels[method.channel_id]
 return channel.handle_method(method)

[docs] def loop(self, timeout=None):
 """Call :meth:`drain_events` continuously

 - Does not raise Timeout exceptions if a timeout occurs

 :param timeout: maximum allowed time to wait for an event
 :type timeout: float or None
 """
 while True:
 try:
 self.drain_events(timeout)
 except Timeout:
 break

[docs] def close(self, reply_code=0, reply_text='', method_type=method_t(0, 0)):
 """Close connection to the server

 This method performs a connection close handshake with the server, then closes the
 underlying connection.

 If this connection close is due to a client error, the client may provide a `reply_code`,
 `reply_text`, and `method_type` to indicate to the server the reason for closing the
 connection.

 :param int reply_code: the reply code
 :param str reply_text: localized reply text
 :param method_type: if close is triggered by a failing method, this is the method that
 caused it
 :type method_type: amqpy.spec.method_t
 """
 if not self.is_alive():
 # already closed
 log.debug('Already closed')
 return

 # signal to the heartbeat thread to stop sending heartbeats
 if self._heartbeat_final:
 self._close_event.set()
 self._heartbeat_thread.join()
 self._heartbeat_thread = None

 args = AMQPWriter()
 args.write_short(reply_code)
 args.write_shortstr(reply_text)
 args.write_short(method_type.class_id)
 args.write_short(method_type.method_id)
 self._send_method(Method(spec.Connection.Close, args))
 return self.wait_any([spec.Connection.Close, spec.Connection.CloseOk])

 def _heartbeat_run(self):
 # `is_alive()` sends heartbeats if the connection is alive
 while self.is_alive():
 # `close` is set to true if the `close_event` is signalled
 close = self._close_event.wait(self._heartbeat_final / 1.5)
 if close:
 break

 def _close(self):
 try:
 self.transport.close()

 channels = [x for x in self.channels.values() if x is not self]
 for ch in channels:
 # noinspection PyProtectedMember
 ch._close()
 except socket.error:
 pass # connection already closed on the other end
 finally:
 self.transport = self.connection = None
 self.channels = {0: self} # reset the channels state

 def _get_free_channel_id(self):
 """Get next free channel ID

 :return: next free channel_id
 :rtype: int
 """
 try:
 return self._avail_channel_ids.pop()
 except IndexError:
 raise ResourceError('No free channel ids, current={0}, channel_max={1}'.format(
 len(self.channels), self.channel_max), spec.Channel.Open)

 def _claim_channel_id(self, channel_id):
 """Claim channel ID

 :param channel_id: channel ID
 :type channel_id: int
 """
 try:
 return self._avail_channel_ids.remove(channel_id)
 except ValueError:
 raise AMQPConnectionError('Channel {} already open'.format(channel_id))

 def _cb_close(self, method):
 """Handle received connection close

 This method indicates that the sender (server) wants to close the connection. This may be
 due to internal conditions (e.g. a forced shut-down) or due to an error handling a specific
 method, i.e. an exception. When a close is due to an exception, the sender provides the
 class and method id of the method which caused the exception.
 """
 args = method.args
 reply_code = args.read_short() # the AMQP reply code
 reply_text = args.read_shortstr() # the localized reply text
 class_id = args.read_short() # class_id of method
 method_id = args.read_short() # method_id of method

 self._send_close_ok() # send a close-ok to the server, to confirm that we've
 # acknowledged the close request

 method_type = method_t(class_id, method_id)
 raise error_for_code(reply_code, reply_text, method_type, AMQPConnectionError,
 self.channel_id)

 def _cb_blocked(self, method):
 """RabbitMQ Extension
 """
 reason = method.args.read_shortstr()
 if callable(self.on_blocked):
 # noinspection PyCallingNonCallable
 return self.on_blocked(reason)

 def _cb_unblocked(self, method):
 assert method
 if callable(self.on_unblocked):
 # noinspection PyCallingNonCallable
 return self.on_unblocked()

 def _send_close_ok(self):
 """Confirm a connection close that has been requested by the server

 This method confirms a Connection.Close method and tells the recipient that it is safe to
 release resources for the connection and close the socket. RULE: A peer that detects a
 socket closure without having received a Close-Ok handshake method SHOULD log the error.
 """
 self._send_method(Method(spec.Connection.CloseOk))
 self._close()

 def _cb_close_ok(self, method):
 """Confirm a connection close

 This method is called when the server send a close-ok in response to our close request. It
 is now safe to close the underlying connection.
 """
 assert method
 self._close()

 def _send_open(self, virtual_host, capabilities=''):
 """Open connection to virtual host

 This method opens a connection to a virtual host, which is a collection of resources, and
 acts to separate multiple application domains within a server. RULE: The client MUST open
 the context before doing any work on the connection.

 :param virtual_host: virtual host path
 :param capabilities: required capabilities
 :type virtual_host: str
 :type capabilities: str
 """
 args = AMQPWriter()
 args.write_shortstr(virtual_host)
 args.write_shortstr(capabilities)
 args.write_bit(False)
 self._send_method(Method(spec.Connection.Open, args))
 return self.wait(spec.Connection.OpenOk)

 def _cb_open_ok(self, method):
 """Signal that the connection is ready

 This method signals to the client that the connection is ready for use.
 """
 assert method
 log.debug('Open OK')

 def _cb_secure(self, method):
 """Security mechanism challenge

 The SASL protocol works by exchanging challenges and responses until both peers have
 received sufficient information to authenticate each other This method challenges the
 client to provide more information.

 PARAMETERS:
 challenge: longstr
 security challenge data
 Challenge information, a block of opaque binary data passed to the security
 mechanism.
 """
 challenge = method.args.read_longstr()
 assert challenge

 def _send_secure_ok(self, response):
 """Security mechanism response

 This method attempts to authenticate, passing a block of SASL data for the security
 mechanism at the server side.

 PARAMETERS:
 response: longstr
 security response data
 A block of opaque data passed to the security mechanism. The contents of this data
 are defined by the SASL security mechanism.
 """
 args = AMQPWriter()
 args.write_longstr(response)
 self._send_method(Method(spec.Connection.SecureOk, args))

 def _cb_start(self, method):
 """Start connection negotiation callback

 This method starts the connection negotiation process by telling the client the protocol
 version that the server proposes, along with a list of security mechanisms which the client
 can use for authentication.

 RULE: If the client cannot handle the protocol version suggested by the server it MUST close
 the socket connection.

 RULE: The server MUST provide a protocol version that is lower than or equal to that
 requested by the client in the protocol header. If the server cannot support the specified
 protocol it MUST NOT send this method, but MUST close the socket connection.

 PARAMETERS:
 version_major: octet
 protocol major version
 The protocol major version that the server agrees to use, which cannot be higher
 than the client's major version.
 version_minor: octet
 protocol major version
 The protocol minor version that the server agrees to use, which cannot be higher
 than the client's minor version.
 server_properties: table
 server properties
 mechanisms: longstr
 available security mechanisms
 A list of the security mechanisms that the server supports, delimited by spaces.
 Currently ASL supports these mechanisms: PLAIN.
 locales: longstr
 available message locales
 A list of the message locales that the server supports, delimited by spaces The
 locale defines the language in which the server will send reply texts.
 RULE:
 All servers MUST support at least the en_US locale.
 """
 args = method.args
 self.version_major = args.read_octet()
 self.version_minor = args.read_octet()
 self.server_properties = args.read_table()
 self.mechanisms = args.read_longstr().split(' ')
 self.locales = args.read_longstr().split(' ')

 properties = pprint.pformat(self.server_properties)
 log.debug('Start from server')
 log.debug('Version: {}.{}'.format(self.version_major, self.version_minor))
 log.debug('Server properties:\n{}'.format(properties))
 log.debug('Security mechanisms: {}'.format(self.mechanisms))
 log.debug('Locales: {}'.format(self.locales))

 def _send_start_ok(self, client_properties, mechanism, response, locale):
 """Select security mechanism and locale

 This method selects a SASL security mechanism. ASL uses SASL (RFC2222) to negotiate
 authentication and encryption.

 PARAMETERS:
 client_properties: table
 client properties
 mechanism: shortstr
 selected security mechanism
 A single security mechanisms selected by the client, which must be one of those
 specified by the server.
 RULE:
 The client SHOULD authenticate using the highest- level security profile it
 can handle from the list
 provided by the server.
 RULE:
 The mechanism field MUST contain one of the security mechanisms proposed by
 the server in the Start
 method. If it doesn't, the server MUST close the socket.
 response: longstr
 security response data
 A block of opaque data passed to the security mechanism. The contents of this
 data are defined by the
 SASL security mechanism For the PLAIN security mechanism this is defined as a
 field table holding two
 fields, LOGIN and PASSWORD.
 locale: shortstr
 selected message locale
 A single message local selected by the client, which must be one of those
 specified by the server.
 """
 if self.server_capabilities.get('consumer_cancel_notify'):
 if 'capabilities' not in client_properties:
 client_properties['capabilities'] = {}
 client_properties['capabilities']['consumer_cancel_notify'] = True
 if self.server_capabilities.get('connection.blocked'):
 if 'capabilities' not in client_properties:
 client_properties['capabilities'] = {}
 client_properties['capabilities']['connection.blocked'] = True
 args = AMQPWriter()
 args.write_table(client_properties)
 args.write_shortstr(mechanism)
 args.write_longstr(response)
 args.write_shortstr(locale)
 self._send_method(Method(spec.Connection.StartOk, args))

 def _cb_tune(self, method):
 """Handle received "tune" method

 This method is the handler for receiving a "tune" method. `channel_max` and `frame_max`
 are set to the lower
 of the values proposed by each party.

 PARAMETERS:
 channel_max: short
 proposed maximum channels
 The maximum total number of channels that the server allows per connection. Zero
 means that the server
 does not impose a fixed limit, but the number of allowed channels may be limited
 by available server
 resources.
 frame_max: long
 proposed maximum frame size
 The largest frame size that the server proposes for the connection. The client
 can negotiate a lower
 value Zero means that the server does not impose any specific limit but may
 reject very large frames
 if it cannot allocate resources for them.
 RULE:
 Until the frame-max has been negotiated, both peers MUST accept frames of up
 to 4096 octets large.
 The minimum non-zero value for the frame-max field is 4096.
 heartbeat: short
 desired heartbeat delay
 The delay, in seconds, of the connection heartbeat that the server wants Zero
 means the server does
 not want a heartbeat.
 """
 args = method.args
 client_heartbeat = self._heartbeat_client or 0
 # maximum number of channels that the server supports
 self.channel_max = min(args.read_short(), self.channel_max)
 # largest frame size the server proposes for the connection
 self.frame_max = min(args.read_long(), self.frame_max)
 self.method_writer.frame_max = self.frame_max
 # heartbeat interval proposed by server
 self._heartbeat_server = args.read_short() or 0

 # negotiate the heartbeat interval to the smaller of the specified values
 if self._heartbeat_server == 0 or client_heartbeat == 0:
 self._heartbeat_final = max(self._heartbeat_server, client_heartbeat)
 else:
 self._heartbeat_final = min(self._heartbeat_server, client_heartbeat)

 # Ignore server heartbeat if client_heartbeat is disabled
 if not self._heartbeat_client:
 self._heartbeat_final = 0

 self._send_tune_ok(self.channel_max, self.frame_max, self._heartbeat_final)

 def _send_tune_ok(self, channel_max, frame_max, heartbeat):
 """Negotiate connection tuning parameters

 This method sends the client's connection tuning parameters to the server. Certain fields
 are negotiated, others provide capability information.

 PARAMETERS:
 channel_max: short
 negotiated maximum channels
 The maximum total number of channels that the client will use per connection.
 May not be higher than
 the value specified by the server.
 RULE:
 The server MAY ignore the channel-max value or MAY use it for tuning its
 resource allocation.
 frame_max: long
 negotiated maximum frame size
 The largest frame size that the client and server will use for the connection.
 Zero means that the
 client does not impose any specific limit but may reject very large frames if it
 cannot allocate
 resources for them. Note that the frame-max limit applies principally to content
 frames, where large
 contents can be broken into frames of arbitrary size.
 RULE:
 Until the frame-max has been negotiated, both peers must accept frames of up
 to 4096 octets large.
 The minimum non-zero value for the frame- max field is 4096.
 heartbeat: short
 desired heartbeat delay
 The delay, in seconds, of the connection heartbeat that the client wants. Zero
 means the client does not
 want a heartbeat.
 """
 args = AMQPWriter()
 args.write_short(channel_max)
 args.write_long(frame_max)
 args.write_short(heartbeat or 0)
 self._send_method(Method(spec.Connection.TuneOk, args))
 self._wait_tune_ok = False

 METHOD_MAP = {
 spec.Connection.Start: _cb_start,
 spec.Connection.Secure: _cb_secure,
 spec.Connection.Tune: _cb_tune,
 spec.Connection.OpenOk: _cb_open_ok,
 spec.Connection.Close: _cb_close,
 spec.Connection.CloseOk: _cb_close_ok,
 spec.Connection.Blocked: _cb_blocked,
 spec.Connection.Unblocked: _cb_unblocked,
 }

 © Copyright 2014, V G.
 Created using Sphinx 1.3.5.

_modules/amqpy/message.html

 Navigation

 		
 index

 		
 modules |

 		amqpy 0.13.1 documentation »

 		Module code »

 Source code for amqpy.message

"""Messages for AMQP
"""
from __future__ import absolute_import, division, print_function

__metaclass__ = type
import six
from . import spec
from amqpy.serialization import AMQPReader, AMQPWriter
import logging

log = logging.getLogger('amqpy')

__all__ = ['Message']

class GenericContent:
 """Base class for AMQP content

 Subclasses should override :attr:`PROPERTIES`.
 """
 __slots__ = ['properties']
 PROPERTIES = []

 def __init__(self, properties):
 """Save the properties appropriate to this AMQP content type in a 'properties' dictionary

 :param dict properties: content properties
 """
 #: Content properties
 #:
 #: :type: dict[str|unicode, str|dict]
 self.properties = properties

 def __eq__(self, other):
 """Check if this object has the same properties as another content object
 """
 return self.properties == other.properties

 def load_properties(self, raw_bytes):
 """Load raw bytes into :attr:`self.properties`

 The `raw_bytes` are the payload of a `FrameType.HEADER` frame, starting at a byte-offset
 of 12.
 """
 reader = AMQPReader(raw_bytes)

 # read 16-bit shorts until we get one with a low bit set to zero
 flags = []
 while True:
 flag_bits = reader.read_short()
 flags.append(flag_bits)
 if flag_bits & 1 == 0:
 break

 shift = 0
 d = {}
 flag_bits = None
 for prop_name, data_type in self.PROPERTIES:
 if shift == 0:
 if not flags:
 break
 flag_bits, flags = flags[0], flags[1:]
 shift = 15
 if flag_bits & (1 << shift):
 d[prop_name] = getattr(reader, 'read_' + data_type)()
 shift -= 1

 self.properties = d

 def serialize_properties(self):
 """Serialize :attr:`self.properties` into raw bytes suitable to append
 to the payload of `FrameType.HEADER` frames
 """
 # write
 shift = 15
 flag_bits = 0
 flags = []
 prop_writer = AMQPWriter()
 for prop_name, data_type in self.PROPERTIES:
 val = self.properties.get(prop_name)
 if val is not None:
 if shift == 0:
 flags.append(flag_bits)
 flag_bits = 0
 shift = 15

 flag_bits |= (1 << shift)
 if data_type != 'bit':
 getattr(prop_writer, 'write_' + data_type)(val)
 shift -= 1
 flags.append(flag_bits)

 # write final data
 writer = AMQPWriter()
 for flag_bits in flags:
 writer.write_short(flag_bits)
 writer.write(prop_writer.getvalue())

 return writer.getvalue()

[docs]class Message(GenericContent):
 """A Message for use with the `Channel.basic_*` methods
 """
 __slots__ = ['body', 'channel', 'delivery_info']

 CLASS_ID = spec.Basic.CLASS_ID

 # instances of this class have these attributes, which are passed back and
 # forth as message properties between client and server
 PROPERTIES = [
 ('content_type', 'shortstr'),
 ('content_encoding', 'shortstr'),
 ('application_headers', 'table'),
 ('delivery_mode', 'octet'),
 ('priority', 'octet'),
 ('correlation_id', 'shortstr'),
 ('reply_to', 'shortstr'),
 ('expiration', 'shortstr'),
 ('message_id', 'shortstr'),
 ('timestamp', 'timestamp'),
 ('type', 'shortstr'),
 ('user_id', 'shortstr'),
 ('app_id', 'shortstr'),
 ('cluster_id', 'shortstr')
]

[docs] def __init__(self, body='', channel=None, **properties):
 """
 If `body` is a `str`, then `content_encoding` will automatically be set to 'UTF-8', unless
 explicitly specified.

 Example::

 msg = Message('hello world', content_type='text/plain', application_headers={'foo': 7})

 :param body: message body
 :type body: bytes or str or unicode
 :param channel: associated channel
 :type channel: amqpy.channel.Channel
 :param properties:
 * content_type (shortstr): MIME content type
 * content_encoding (shortstr): MIME content encoding
 * application_headers: (table): Message header field table:
 dict[str, str|int|Decimal|datetime|dict]
 * delivery_mode: (octet): Non-persistent (1) or persistent (2)
 * priority (octet): The message priority, 0 to 9
 * correlation_id (shortstr) The application correlation identifier
 * reply_to (shortstr) The destination to reply to
 * expiration (shortstr): Message expiration specification
 * message_id (shortstr): The application message identifier
 * timestamp (datetime.datetime): The message timestamp
 * type (shortstr): The message type name
 * user_id (shortstr): The creating user id
 * app_id (shortstr): The creating application id
 * cluster_id (shortstr): Intra-cluster routing identifier
 """
 super(Message, self).__init__(properties)

 #: Message body (bytes or str or unicode)
 self.body = body

 #: Associated channel, set after receiving a message (amqpy.channel.Channel)
 self.channel = channel

 #: Delivery info, set after receiving a message (dict)
 self.delivery_info = {}

 if isinstance(body, six.string_types):
 # if the `body` is a string, automatically set the content_encoding
 # to UTF-8 if it hasn't already been set
 self.properties['content_encoding'] = properties.get('content_encoding', 'UTF-8')

 def __eq__(self, other):
 """Check if the properties and bodies of this Message and another Message are the same

 Received messages may contain a 'delivery_info' attribute, which isn't compared.
 """
 try:
 return super(Message, self).__eq__(other) and self.body == other.body
 except AttributeError:
 return False

 @property
 def application_headers(self):
 """Get application headers

 :return: application headers
 :rtype: dict
 """
 return self.properties.get('application_headers')

 @property
 def delivery_tag(self):
 """Get delivery tag

 :return: delivery tag
 :rtype: int
 """
 return self.delivery_info.get('delivery_tag')

[docs] def ack(self):
 """Acknowledge message

 This is a convenience method which calls :meth:`self.channel.basic_ack()`
 """
 dt = self.delivery_tag
 if dt is not None:
 self.channel.basic_ack(dt)
 else:
 raise Exception('No delivery tag')

[docs] def reject(self, requeue):
 """Reject message

 This is a convenience method which calls :meth:`self.channel.basic_reject()`

 :param bool requeue: requeue if True else discard the message
 """
 dt = self.delivery_tag
 if dt is not None:
 self.channel.basic_reject(dt, requeue)
 else:
 raise Exception('No delivery tag')

 © Copyright 2014, V G.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		
 modules |

 		amqpy 0.13.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, V G.
 Created using Sphinx 1.3.5.

_static/file.png

_static/comment-bright.png

amqpy.consumer.html

 Navigation

 		
 index

 		
 modules |

 		amqpy 0.13.1 documentation »

amqpy.consumer module

 © Copyright 2014, V G.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/up-pressed.png

_modules/amqpy/proto.html

 Navigation

 		
 index

 		
 modules |

 		amqpy 0.13.1 documentation »

 		Module code »

 Source code for amqpy.proto

"""High-level representations of AMQP protocol objects
"""
from __future__ import absolute_import, division, print_function

__metaclass__ = type
import six
import struct
import logging

from .serialization import AMQPReader, AMQPWriter
from .spec import FrameType, method_t
from .message import Message

log = logging.getLogger('amqpy')

[docs]class Frame:
 """AMQP frame

 A `Frame` represents the lowest-level packet of data specified by the AMQP 0.9.1
 wire-level protocol. All methods and messages are packed into one or more frames before being
 sent to the peer.

 The format of the AMQP frame is as follows::

 offset: 0 1 3 7 size+7 size+8
 +------+---------+---------+-------------------+-----------+
 | type | channel | size | --- payload --- | frame-end |
 +------+---------+---------+-------------------+-----------+
 size (bytes) 1 2 4 size 1
 """

 __slots__ = ['data', '_frame_type', '_channel', '_payload_size']

[docs] def __init__(self, frame_type=None, channel=0, payload=bytes()):
 """Create new Frame

 Leave all three parameters as default to create an empty frame whose `data` can be manually
 written to afterwards.

 :param frame_type: frame type
 :param channel: associated channel number
 :param payload: frame payload
 :type frame_type: int
 :type channel: int
 :type payload: bytes or bytearray
 """
 #: raw frame data; can be manually manipulated at any time
 #:
 #: :type: bytearray
 self.data = bytearray()

 self._frame_type = None
 self._channel = None
 self._payload_size = None

 # create bytearray from provided data
 if frame_type is not None:
 self._frame_type = frame_type
 self._channel = channel
 self._payload_size = len(payload)
 frame_format = '>BHI{}sB'.format(self._payload_size)
 self.data = struct.pack(frame_format, frame_type, channel, self._payload_size, payload,
 FrameType.END)

 @property
 def frame_type(self):
 """Get frame type

 :return: frame type
 :rtype: int
 """
 if self._frame_type is not None:
 return self._frame_type
 else:
 self._frame_type = struct.unpack_from('>B', self.data)[0]
 return self._frame_type

 @property
 def channel(self):
 """Get frame channel number

 :return: channel number
 :rtype: int
 """
 if self._channel is not None:
 return self._channel
 else:
 self._channel = struct.unpack_from('>H', self.data, 1)[0]
 return self._channel

 @property
 def payload_size(self):
 """Get frame payload size

 :return: payload size
 :rtype: int
 """
 if self._payload_size is not None:
 return self._payload_size
 else:
 self._payload_size = struct.unpack_from('>I', self.data, 3)[0]
 return self._payload_size

 @property
 def payload(self):
 """Get frame payload

 :return: payload
 :rtype: bytearray
 """
 return self.data[7:-1]

[docs]class Method:
 """AMQP method

 The AMQP 0.9.1 protocol specifies communication as sending and receiving "methods". Methods
 consist of a "class-id" and "method-id" and are represented by a `method_t` namedtuple in amqpy.
 Methods are packed into the payload of a `FrameType.METHOD` frame, and most methods can be fully
 sent in a single frame. If the method specified to be carrying content (such as a message), the
 method frame is followed by additional frames: a `FrameType.HEADER` frame, then zero or more
 `FrameType.BODY` frames.

 The format of the `FrameType.METHOD` frame's payload is as follows::

 offset: 0 2 4
 +----------+-----------+-------------- - -
 | class-id | method-id | arguments...
 +----------+-----------+-------------- - -
 size (bytes): 2 2 variable

 The format of the `FrameType.HEADER` frame's payload is as follows::

 offset: 0 2 4 12 14
 +----------+--------+-----------+----------------+------------------- - -
 | class-id | weight | body size | property flags | property list...
 +----------+--------+-----------+----------------+------------------- - -
 size (bytes): 2 2 8 2 variable

 The format of the `FrameType.BODY` frame's payload is simply raw binary data of the message
 body.
 """
 __slots__ = ['method_type', 'args', 'content', 'channel_id', '_body_bytes', '_expected_body_size']

[docs] def __init__(self, method_type=None, args=None, content=None, channel_id=None):
 """
 :param method_type: method type
 :param args: method args
 :param content: content
 :param channel_id: the associated channel ID, if any
 :type method_type: method_t
 :type args: AMQPReader or AMQPWriter or None
 :type content: Message or None
 :type channel_id: int or None
 """
 #: :type: amqpy.spec.method_t
 self.method_type = method_type

 if isinstance(args, (AMQPReader, AMQPWriter)):
 self.args = args
 elif args is None:
 self.args = AMQPWriter()
 else:
 raise ValueError('args must be an instance of `AMQPReader` or `AMQPWriter`')

 #: :type: Message or None
 self.content = content # Message if this method is carrying content
 #: :type: int
 self.channel_id = channel_id

 self._body_bytes = bytearray() # used internally to store encoded GenericContent body
 self._expected_body_size = None # set automatically when `load_header_frame()` is called

[docs] def load_method_frame(self, frame):
 """Load method frame payload data

 This method is intended to be called when constructing a `Method` from incoming data.

 After calling, `self.method_type`, `self.args`, and `self.channel_id` will be loaded with
 data from the frame.

 :param frame: `FrameType.METHOD` frame
 :type frame: amqpy.proto.Frame
 """
 # noinspection PyTypeChecker
 self.method_type = method_t(*struct.unpack('>HH', frame.payload[:4]))
 self.args = AMQPReader(frame.payload[4:])
 self.channel_id = frame.channel

[docs] def load_header_frame(self, frame):
 """Add header to partial method

 This method is intended to be called when constructing a `Method` from incoming data.

 :param frame: `FrameType.HEADER` frame
 :type frame: amqpy.proto.Frame
 """
 if not self.content:
 self.content = Message()

 # noinspection PyTypeChecker
 class_id, weight, self._expected_body_size = struct.unpack('>HHQ', frame.payload[:12])
 self.content.load_properties(frame.payload[12:])

[docs] def load_body_frame(self, frame):
 """Add content to partial method

 This method is intended to be called when constructing a `Method` from incoming data.

 :param frame: `FrameType.BODY` frame
 :type frame: amqpy.proto.Frame
 """
 self._body_bytes.extend(frame.payload)
 if self.complete:
 self.content.body = bytes(self._body_bytes)

 @property
 def complete(self):
 """Check if the message that is carried by this method has been completely assembled,
 i.e. the expected number of bytes have been loaded

 This method is intended to be called when constructing a `Method` from incoming data.

 :return: True if method is complete, else False
 :rtype: bool
 """
 return self._expected_body_size == 0 or len(self._body_bytes) == self._expected_body_size

 def _pack_method(self):
 """Pack this method into a bytes object suitable for using as a payload for
 `FrameType.METHOD` frames

 This method is intended to be called when packing an already-completed `Method` into
 outgoing frames.

 :return: bytes
 :rtype: bytes
 """
 return struct.pack('>HH', self.method_type.class_id,
 self.method_type.method_id) + self.args.getvalue()

 def _pack_header(self):
 """Pack this method into a bytes object suitable for using as a payload for
 `FrameType.HEADER` frames

 This method is intended to be called when packing an already-completed `Method` into
 outgoing frames.

 :return: bytes
 :rtype: bytes
 """
 if not self.content:
 raise ValueError('`_pack_header()` is only meaningful if there is content to pack')

 self._body_bytes = self.content.body
 if isinstance(self._body_bytes, six.string_types):
 # encode body to bytes
 coding = self.content.properties.setdefault('content_encoding', 'UTF-8')
 try:
 self._body_bytes = self.content.body.encode(coding)
 except LookupError:
 self._body_bytes = self.content.body

 properties = self.content.serialize_properties()
 return struct.pack('>HHQ', self.method_type.class_id, 0, len(self._body_bytes)) + properties

 def _pack_body(self, chunk_size):
 """Pack this method into a bytes object suitable for using as a payload for
 `FrameType.BODY` frames

 This method is intended to be called when packing an already-completed `Method` into
 outgoing frames.

 :param chunk_size: split up body into pieces that are at most `chunk_size` bytes each
 :type chunk_size: int
 :return: bytes generator
 :rtype: generator[bytes]
 """
 if not self.content:
 raise ValueError('`_pack_body()` is only meaningful if there is content to pack')

 for i in range(0, len(self._body_bytes), chunk_size):
 yield self._body_bytes[i:i + chunk_size]

[docs] def dump_method_frame(self):
 """Create a method frame

 This method is intended to be called when sending frames for an already-completed `Method`.

 :return: `FrameType.METHOD` frame
 :rtype: amqpy.proto.Frame
 """
 frame = Frame(FrameType.METHOD, self.channel_id, self._pack_method())
 return frame

[docs] def dump_header_frame(self):
 """Create a header frame

 This method is intended to be called when sending frames for an already-completed `Method`.

 :return: `FrameType.HEADER` frame
 :rtype: amqpy.proto.Frame
 """
 frame = Frame(FrameType.HEADER, self.channel_id, self._pack_header())
 return frame

[docs] def dump_body_frame(self, chunk_size):
 """Create a body frame

 This method is intended to be called when sending frames for an already-completed `Method`.

 :param chunk_size: body chunk size in bytes; this is typically the maximum frame size - 8
 :type chunk_size: int
 :return: generator of `FrameType.BODY` frames
 :rtype: generator[amqpy.proto.Frame]
 """
 for payload in self._pack_body(chunk_size):
 frame = Frame(FrameType.BODY, self.channel_id, payload)
 yield frame

 © Copyright 2014, V G.
 Created using Sphinx 1.3.5.

_modules/amqpy/exceptions.html

 Navigation

 		
 index

 		
 modules |

 		amqpy 0.13.1 documentation »

 		Module code »

 Source code for amqpy.exceptions

"""
AMQP uses exceptions to handle errors:

* Any operational error (message queue not found, insufficient access rights, etc.) results in a
 channel exception.
* Any structural error (invalid argument, bad sequence of methods, etc.) results in a connection
 exception.

According to the AMQP specification, an exception closes the associated channel or connection, and
returns a reply code and reply text to the client. However, amqpy will automatically re-open the
channel after a channel error.
"""
from __future__ import absolute_import, division, print_function

__metaclass__ = type
import struct
from collections import namedtuple

from . import compat

compat.patch() # monkey-patch builtins.TimeoutError

method_t = namedtuple('method_t', ('class_id', 'method_id'))

__all__ = [
 'Timeout',
 'AMQPError',
 'AMQPConnectionError', 'ChannelError',
 'RecoverableConnectionError', 'IrrecoverableConnectionError',
 'RecoverableChannelError', 'IrrecoverableChannelError',
 'ConsumerCancelled', 'ContentTooLarge', 'NoConsumers',
 'ConnectionForced', 'InvalidPath', 'AccessRefused', 'NotFound',
 'ResourceLocked', 'PreconditionFailed', 'FrameError', 'FrameSyntaxError',
 'InvalidCommand', 'ChannelNotOpen', 'UnexpectedFrame', 'ResourceError',
 'NotAllowed', 'AMQPNotImplementedError', 'InternalError',
]

[docs]class Timeout(TimeoutError):
 """General AMQP operation timeout
 """
 pass

class AMQPError(Exception):
 code = 0

 def __init__(self, reply_text=None, method_type=None, method_name=None, reply_code=None,
 channel_id=None):
 """
 :param reply_text: localized reply text
 :param method_type: method type
 :param method_name: method name
 :param reply_code: AMQP reply (exception) code
 :param channel_id: associated channel ID, if any
 :type reply_text: str or None
 :type method_type: amqpy.spec.method_t or None
 :type method_name: str or None
 :type reply_code: int or None
 :type channel_id: int or None
 """
 self.message = reply_text
 self.reply_code = reply_code or self.code
 self.reply_text = reply_text
 self.method_type = method_type
 self.method_name = method_name or ''
 if method_type and not self.method_name:
 self.method_name = METHOD_NAME_MAP.get(method_type, '')
 self.channel_id = channel_id
 super(AMQPError, self).__init__(self, reply_code, reply_text, method_type, self.method_name, channel_id)

 def __str__(self):
 if self.method:
 return '{0.method} [ch: {0.channel_id}]: ({0.reply_code}) {0.reply_text}'.format(self)
 return self.reply_text or '<AMQPError: unknown error>'

 @property
 def method(self):
 return self.method_name or self.method_type

class AMQPConnectionError(AMQPError):
 pass

class ChannelError(AMQPError):
 pass

class RecoverableChannelError(ChannelError):
 pass

class IrrecoverableChannelError(ChannelError):
 pass

class RecoverableConnectionError(AMQPConnectionError):
 pass

class IrrecoverableConnectionError(AMQPConnectionError):
 pass

class Blocked(RecoverableConnectionError):
 pass

class ConsumerCancelled(RecoverableConnectionError):
 pass

[docs]class ContentTooLarge(RecoverableChannelError):
 """The client attempted to transfer content larger than the server could accept at the present
 time. The client may retry at a later time.
 """
 code = 311

[docs]class NoConsumers(RecoverableChannelError):
 """When the exchange cannot deliver to a consumer when the immediate flag is set. As a result
 of pending data on the queue or the absence of any consumers of the queue.
 """
 code = 313

[docs]class ConnectionForced(RecoverableConnectionError):
 """An operator intervened to close the connection for some reason. The client may retry at some
 later date.
 """
 code = 320

[docs]class InvalidPath(IrrecoverableConnectionError):
 """The client tried to work with an unknown virtual host.
 """
 code = 402

[docs]class AccessRefused(IrrecoverableChannelError):
 """The client attempted to work with a server entity to which it has no access due to
 security settings.
 """
 code = 403

[docs]class NotFound(IrrecoverableChannelError):
 """The client attempted to work with a server entity that does not exist.
 """
 code = 404

[docs]class ResourceLocked(RecoverableChannelError):
 """The client attempted to work with a server entity to which it has no access because
 another client is working
 with it.
 """
 code = 405

[docs]class PreconditionFailed(IrrecoverableChannelError):
 """The client requested a method that was not allowed because some precondition failed.
 """
 code = 406

[docs]class FrameError(IrrecoverableConnectionError):
 """The sender sent a malformed frame that the recipient could not decode. This strongly implies
 a programming error in the sending peer.
 """
 code = 501

[docs]class FrameSyntaxError(IrrecoverableConnectionError):
 """The sender sent a frame that contained illegal values for one or more fields. This strongly
 implies a programming error in the sending peer.
 """
 code = 502

[docs]class InvalidCommand(IrrecoverableConnectionError):
 """The client sent an invalid sequence of frames, attempting to perform an operation that was
 considered invalid by the server. This usually implies a programming error in the client.
 """
 code = 503

[docs]class ChannelNotOpen(IrrecoverableConnectionError):
 """The client attempted to work with a channel that had not been correctly opened. This most
 likely indicates a fault in the client layer.
 """
 code = 504

[docs]class UnexpectedFrame(IrrecoverableConnectionError):
 """The peer sent a frame that was not expected, usually in the context of a content header and
 body. This strongly indicates a fault in the peer's content processing.
 """
 code = 505

[docs]class ResourceError(RecoverableConnectionError):
 """The server could not complete the method because it lacked sufficient resources. This may be
 due to the client creating too many of some type of entity.
 """
 code = 506

[docs]class NotAllowed(IrrecoverableConnectionError):
 """The client tried to work with some entity in a manner that is prohibited by the server, due
 to security settings or by some other criteria.
 """
 code = 530

[docs]class AMQPNotImplementedError(IrrecoverableConnectionError):
 """The client tried to use functionality that is not implemented in the server.
 """
 code = 540

[docs]class InternalError(IrrecoverableConnectionError):
 """The server could not complete the method because of an internal error. The server may
 require intervention by an operator in order to resume normal operations.
 """
 code = 541

ERROR_MAP = {
 311: ContentTooLarge,
 313: NoConsumers,
 320: ConnectionForced,
 402: InvalidPath,
 403: AccessRefused,
 404: NotFound,
 405: ResourceLocked,
 406: PreconditionFailed,
 501: FrameError,
 502: FrameSyntaxError,
 503: InvalidCommand,
 504: ChannelNotOpen,
 505: UnexpectedFrame,
 506: ResourceError,
 530: NotAllowed,
 540: AMQPNotImplementedError,
 541: InternalError,
}

def error_for_code(code, text, meth_type, default, channel_id=None):
 """Get exception class associated with specified error code

 :param int code: AMQP reply code
 :param str text: localized reply text
 :param meth_type: method type
 :param default: default exception class if error code cannot be matched with an exception class
 :param channel_id: optional associated channel ID
 :type meth_type: amqpy.spec.method_t
 :type default: Callable
 :type channel_id: int or None
 :return: Exception object
 :rtype: Exception
 """
 try:
 exc = ERROR_MAP[code]
 return exc(text, meth_type, reply_code=code, channel_id=channel_id)
 except KeyError:
 return default(text, meth_type, reply_code=code, channel_id=channel_id)

METHOD_NAME_MAP = {
 method_t(10, 10): 'connection.start',
 method_t(10, 11): 'connection.start-ok',
 method_t(10, 20): 'connection.secure',
 method_t(10, 21): 'connection.secure-ok',
 method_t(10, 30): 'connection.tune',
 method_t(10, 31): 'connection.tune-ok',
 method_t(10, 40): 'connection.open',
 method_t(10, 41): 'connection.open-ok',
 method_t(10, 50): 'connection.close',
 method_t(10, 51): 'connection.close-ok',
 method_t(10, 60): 'connection.blocked',
 method_t(10, 61): 'connection.unblocked',
 method_t(20, 10): 'channel.open',
 method_t(20, 11): 'channel.open-ok',
 method_t(20, 20): 'channel.flow',
 method_t(20, 21): 'channel.flow-ok',
 method_t(20, 40): 'channel.close',
 method_t(20, 41): 'channel.close-ok',
 method_t(30, 10): 'access.request',
 method_t(30, 11): 'access.request-ok',
 method_t(40, 10): 'exchange.declare',
 method_t(40, 11): 'exchange.declare-ok',
 method_t(40, 20): 'exchange.delete',
 method_t(40, 21): 'exchange.delete-ok',
 method_t(40, 30): 'exchange.bind',
 method_t(40, 31): 'exchange.bind-ok',
 method_t(40, 40): 'exchange.unbind',
 method_t(40, 51): 'exchange.unbind-ok',
 method_t(50, 10): 'queue.declare',
 method_t(50, 11): 'queue.declare-ok',
 method_t(50, 20): 'queue.bind',
 method_t(50, 21): 'queue.bind-ok',
 method_t(50, 30): 'queue.purge',
 method_t(50, 31): 'queue.purge-ok',
 method_t(50, 40): 'queue.delete',
 method_t(50, 41): 'queue.delete-ok',
 method_t(50, 50): 'queue.unbind',
 method_t(50, 51): 'queue.unbind-ok',
 method_t(60, 10): 'basic.qos',
 method_t(60, 11): 'basic.qos-ok',
 method_t(60, 20): 'basic.consume',
 method_t(60, 21): 'basic.consume-ok',
 method_t(60, 30): 'basic.cancel',
 method_t(60, 31): 'basic.cancel-ok',
 method_t(60, 40): 'basic.publish',
 method_t(60, 50): 'basic.return',
 method_t(60, 60): 'basic.deliver',
 method_t(60, 70): 'basic.get',
 method_t(60, 71): 'basic.get-ok',
 method_t(60, 72): 'basic.get-empty',
 method_t(60, 80): 'basic.ack',
 method_t(60, 90): 'basic.reject',
 method_t(60, 100): 'basic.recover-async',
 method_t(60, 110): 'basic.recover',
 method_t(60, 111): 'basic.recover-ok',
 method_t(60, 120): 'basic.nack',
 method_t(90, 10): 'tx.select',
 method_t(90, 11): 'tx.select-ok',
 method_t(90, 20): 'tx.commit',
 method_t(90, 21): 'tx.commit-ok',
 method_t(90, 30): 'tx.rollback',
 method_t(90, 31): 'tx.rollback-ok',
 method_t(85, 10): 'confirm.select',
 method_t(85, 11): 'confirm.select-ok',
}

insert keys which are 4-byte unsigned int representations of a method type for easy lookups
for mt, name in list(METHOD_NAME_MAP.items()):
 data = struct.pack('>HH', *mt)
 METHOD_NAME_MAP[struct.unpack('>I', data)[0]] = name

 © Copyright 2014, V G.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		amqpy 0.13.1 documentation »

 All modules for which code is available

		amqpy.channel

		amqpy.connection

		amqpy.exceptions

		amqpy.message

		amqpy.proto

		amqpy.spec

 © Copyright 2014, V G.
 Created using Sphinx 1.3.5.

_modules/amqpy/spec.html

 Navigation

 		
 index

 		
 modules |

 		amqpy 0.13.1 documentation »

 		Module code »

 Source code for amqpy.spec

from __future__ import absolute_import, division, print_function

__metaclass__ = type
from collections import namedtuple

queue_declare_ok_t = namedtuple('queue_declare_ok_t', ['queue', 'message_count', 'consumer_count'])

basic_return_t = namedtuple('basic_return_t',
 ['reply_code', 'reply_text', 'exchange', 'routing_key', 'message'])

method_t = namedtuple('method_t', ['class_id', 'method_id'])

#: The default, minimum frame size that both the client and server must be able to handle
FRAME_MIN_SIZE = 4096

[docs]class FrameType:
 """This class contains frame-related constants

 METHOD, HEADER, BODY, and HEARTBEAT are all frame type constants which make up the first byte
 of every frame. The END constant is the termination value which is the last byte of every frame.
 """
 METHOD = 1 # method frame
 HEADER = 2 # content header frame
 BODY = 3 # content body frame
 HEARTBEAT = 8 # heartbeat frame
 END = 206 # not actually a frame type; this is the frame terminator byte

class Connection:
 CLASS_ID = 10

 Start = method_t(10, 10)
 StartOk = method_t(10, 11)
 Secure = method_t(10, 20)
 SecureOk = method_t(10, 21)
 Tune = method_t(10, 30)
 TuneOk = method_t(10, 31)
 Open = method_t(10, 40)
 OpenOk = method_t(10, 41)
 Close = method_t(10, 50)
 CloseOk = method_t(10, 51)
 Blocked = method_t(10, 60)
 Unblocked = method_t(10, 61)

class Channel:
 CLASS_ID = 20

 Open = method_t(20, 10)
 OpenOk = method_t(20, 11)
 Flow = method_t(20, 20)
 FlowOk = method_t(20, 21)
 Close = method_t(20, 40)
 CloseOk = method_t(20, 41)

class Exchange:
 CLASS_ID = 40

 Declare = method_t(40, 10)
 DeclareOk = method_t(40, 11)
 Delete = method_t(40, 20)
 DeleteOk = method_t(40, 21)
 Bind = method_t(40, 30)
 BindOk = method_t(40, 31)
 Unbind = method_t(40, 40)
 UnbindOk = method_t(40, 51)

class Queue:
 CLASS_ID = 50

 Declare = method_t(50, 10)
 DeclareOk = method_t(50, 11)
 Bind = method_t(50, 20)
 BindOk = method_t(50, 21)
 Purge = method_t(50, 30)
 PurgeOk = method_t(50, 31)
 Delete = method_t(50, 40)
 DeleteOk = method_t(50, 41)
 Unbind = method_t(50, 50)
 UnbindOk = method_t(50, 51)

class Basic:
 CLASS_ID = 60

 Qos = method_t(60, 10)
 QosOk = method_t(60, 11)
 Consume = method_t(60, 20)
 ConsumeOk = method_t(60, 21)
 Cancel = method_t(60, 30)
 CancelOk = method_t(60, 31)
 Publish = method_t(60, 40)
 Return = method_t(60, 50)
 Deliver = method_t(60, 60)
 Get = method_t(60, 70)
 GetOk = method_t(60, 71)
 GetEmpty = method_t(60, 72)
 Ack = method_t(60, 80)
 Reject = method_t(60, 90)
 RecoverAsync = method_t(60, 100)
 Recover = method_t(60, 110)
 RecoverOk = method_t(60, 111)

class Confirm:
 CLASS_ID = 85

 Select = method_t(85, 10)
 SelectOk = method_t(85, 11)

class Tx:
 CLASS_ID = 90

 Select = method_t(90, 10)
 SelectOk = method_t(90, 11)
 Commit = method_t(90, 20)
 CommitOk = method_t(90, 21)
 Rollback = method_t(90, 30)
 RollbackOk = method_t(90, 31)

 © Copyright 2014, V G.
 Created using Sphinx 1.3.5.

_modules/amqpy/channel.html

 Navigation

 		
 index

 		
 modules |

 		amqpy 0.13.1 documentation »

 		Module code »

 Source code for amqpy.channel

"""AMQP Channels
"""
from __future__ import absolute_import, division, print_function

__metaclass__ = type
import logging
import six

if six.PY2:
 from Queue import Queue
else:
 from queue import Queue

from .proto import Method
from .concurrency import synchronized_connection
from .abstract_channel import AbstractChannel
from .exceptions import ChannelError, ConsumerCancelled, error_for_code
from .spec import basic_return_t, queue_declare_ok_t, method_t
from .serialization import AMQPWriter
from . import spec

__all__ = ['Channel']

log = logging.getLogger('amqpy')

[docs]class Channel(AbstractChannel):
 """
 The channel class provides methods for a client to establish and operate an AMQP channel. All
 public members are fully thread-safe.
 """
 ### constants
 #: Default channel mode
 CH_MODE_NONE = 0
 #: Transaction mode
 CH_MODE_TX = 1
 #: Publisher confirm mode (RabbitMQ extension)
 CH_MODE_CONFIRM = 2

[docs] def __init__(self, connection, channel_id=None, auto_decode=True):
 """Create a channel bound to a connection and using the specified numeric channel_id, and
 open on the server

 If `auto_decode` is enabled (default), incoming Message bodies will be automatically decoded
 to `str` if possible.

 :param connection: the channel's associated Connection
 :param channel_id: the channel's assigned channel ID
 :param auto_decode: enable auto decoding of message bodies
 :type connection: amqpy.connection.Connection
 :type channel_id: int or None
 :type auto_decode: bool
 """
 if channel_id:
 # noinspection PyProtectedMember
 connection._claim_channel_id(channel_id)
 else:
 # noinspection PyProtectedMember
 channel_id = connection._get_free_channel_id()

 super(Channel, self).__init__(connection, channel_id)

 # auto decode received messages
 self.auto_decode = auto_decode

 ### channel state variables:

 #: Current channel open/closed state
 #:
 #: :type: bool
 self.is_open = False

 #: Current channel active state (flow control)
 #:
 #: :type: bool
 self.active = True

 #: Channel mode state (default, transactional, publisher confirm)
 #:
 #: :type: int
 self.mode = 0

 #: Returned messages that the server was unable to deliver
 #:
 #: :type: queue.Queue
 self.returned_messages = Queue()

 # consumer callbacks dict[consumer_tag str: callable]
 self.callbacks = {}

 # consumer cancel callbacks dict dict[consumer_tag str: callable]
 self.cancel_callbacks = {}

 # set of consumers that have opted for `no_ack` delivery (server will not expect an ack
 # for delivered messages)
 self.no_ack_consumers = set()

 # open the channel
 self._open()

 def _close(self):
 """Tear down this object, after we've agreed to close with the server
 """
 log.debug('Channel close #{}'.format(self.channel_id))
 self.is_open = False
 channel_id, self.channel_id = self.channel_id, None
 connection, self.connection = self.connection, None
 if connection:
 connection.channels.pop(channel_id, None)
 # noinspection PyProtectedMember
 connection._avail_channel_ids.append(channel_id)
 self.callbacks.clear()
 self.cancel_callbacks.clear()
 self.no_ack_consumers.clear()

 def _open(self):
 """Open the channel
 """
 if self.is_open:
 return

 self._send_open()

 def _revive(self):
 self.is_open = False
 self.mode = self.CH_MODE_NONE
 self._send_open()

 @synchronized_connection()
[docs] def close(self, reply_code=0, reply_text='', method_type=method_t(0, 0)):
 """Request a channel close

 This method indicates that the sender wants to close the channel. This may be due to
 internal conditions (e.g. a forced shut-down) or due to an error handling a specific method,
 i.e. an exception When a close is due to an exception, the sender provides the class and
 method id of the method which caused the exception.

 :param reply_code: the reply code
 :param reply_text: localized reply text
 :param method_type: if close is triggered by a failing method, this is the method that
 caused it
 :type reply_code: int
 :type reply_text: str
 :type method_type: amqpy.spec.method_t
 """
 try:
 if not self.is_open or self.connection is None:
 return

 args = AMQPWriter()
 args.write_short(reply_code)
 args.write_shortstr(reply_text)
 args.write_short(method_type.class_id)
 args.write_short(method_type.method_id)
 self._send_method(Method(spec.Channel.Close, args))
 return self.wait_any([spec.Channel.Close, spec.Channel.CloseOk])
 finally:
 self.connection = None

 def _cb_close(self, method):
 """Respond to a channel close sent by the server

 This method indicates that the sender (server) wants to close the channel. This may be due
 to internal conditions (e.g. a forced shut-down) or due to an error handling a specific
 method, i.e. an exception. When a close is due to an exception, the sender provides the
 class and method id of the method which caused the exception.

 This method sends a "close-ok" to the server, then re-opens the channel.
 """
 args = method.args
 reply_code = args.read_short()
 reply_text = args.read_shortstr()
 class_id = args.read_short()
 method_id = args.read_short()

 self._send_method(Method(spec.Channel.CloseOk))
 self.is_open = False

 # re-open the channel
 self._revive()

 # get information about the method which caused the server to close the channel
 method_type = method_t(class_id, method_id)
 raise error_for_code(reply_code, reply_text, method_type, ChannelError, self.channel_id)

 def _cb_close_ok(self, method):
 """Confirm a channel close

 This method confirms a Channel.Close method and tells the recipient that it is safe to
 release resources for the channel and close the socket.
 """
 assert method
 self._close()

 @synchronized_connection()
[docs] def flow(self, active):
 """Enable/disable flow from peer

 This method asks the peer to pause or restart the flow of content data. This is a simple
 flow-control mechanism that a peer can use to avoid overflowing its queues or otherwise
 finding itself receiving more messages than it can process. Note that this method is not
 intended for window control The peer that receives a request to stop sending content
 should finish sending the current content, if any, and then wait until it receives a Flow
 restart method.

 :param active: True: peer starts sending content frames; False: peer stops sending content
 frames
 :type active: bool
 """
 args = AMQPWriter()
 args.write_bit(active)
 self._send_method(Method(spec.Channel.Flow, args))
 return self.wait_any([spec.Channel.FlowOk, self._cb_flow_ok])

 def _cb_flow(self, method):
 """Enable/disable flow from peer

 This method asks the peer to pause or restart the flow of content data. This is a simple
 flow-control mechanism that a peer can use to avoid overflowing its queues or otherwise
 finding itself receiving more messages than it can process. Note that this method is not
 intended for window control The peer that receives a request to stop sending content
 should finish sending the current content, if any, and then wait until it receives a Flow
 restart method.
 """
 args = method.args
 self.active = args.read_bit()
 self._send_flow_ok(self.active)

 def _send_flow_ok(self, active):
 """Confirm a flow method

 Confirms to the peer that a flow command was received and processed.

 :param active: True: peer starts sending content frames; False: peer stops sending content
 frames
 :type active: bool
 """
 args = AMQPWriter()
 args.write_bit(active)
 self._send_method(Method(spec.Channel.FlowOk, args))

 def _cb_flow_ok(self, method):
 """Confirm a flow method

 Confirms to the peer that a flow command was received and processed.
 """
 args = method.args
 return args.read_bit()

 def _send_open(self):
 """Open a channel

 This method opens a channel.
 """
 args = AMQPWriter()
 args.write_shortstr('') # reserved
 self._send_method(Method(spec.Channel.Open, args))
 return self.wait(spec.Channel.OpenOk)

 def _cb_open_ok(self, method):
 """Handle received "open-ok"

 The server sends this method to signal to the client that this channel is ready for use.
 """
 assert method
 self.is_open = True
 log.debug('Channel open')

 @synchronized_connection()
[docs] def exchange_declare(self, exchange, exch_type, passive=False, durable=False, auto_delete=True,
 nowait=False, arguments=None):
 """Declare exchange, create if needed

 * Exchanges cannot be redeclared with different types. The client MUST not attempt to
 redeclare an existing exchange with a different type than used in the original
 Exchange.Declare method.
 * This method creates an exchange if it does not already exist, and if the exchange
 exists, verifies that it is of the correct and expected class.
 * The server must ignore the `durable` field if the exchange already exists.
 * The server must ignore the `auto_delete` field if the exchange already exists.
 * If `nowait` is enabled and the server could not complete the method, it will raise a
 channel or connection exception.
 * `arguments` is ignored if passive is True.

 :param str exchange: exchange name
 :param str exch_type: exchange type (direct, fanout, etc.)
 :param bool passive: do not create exchange; client can use this to check whether an
 exchange exists
 :param bool durable: mark exchange as durable (remain active after server restarts)
 :param bool auto_delete: auto-delete exchange when all queues have finished using it
 :param bool nowait: if set, the server will not respond to the method and the client should
 not wait for a reply
 :param dict arguments: exchange declare arguments
 :raise AccessRefused: if attempting to declare an exchange with a reserved name (amq.*)
 :raise NotFound: if `passive` is enabled and the exchange does not exist
 :return: None
 """
 arguments = arguments or {}
 args = AMQPWriter()
 args.write_short(0) # reserved-1
 args.write_shortstr(exchange) # exchange name
 args.write_shortstr(exch_type) # exchange type
 args.write_bit(passive) # passive
 args.write_bit(durable) # durable
 args.write_bit(auto_delete) # auto-delete
 args.write_bit(False) # internal
 args.write_bit(nowait)
 args.write_table(arguments)
 self._send_method(Method(spec.Exchange.Declare, args))

 if not nowait:
 return self.wait(spec.Exchange.DeclareOk)

 def _cb_exchange_declare_ok(self, method):
 """Confirms an exchange declaration

 The server sends this method to confirm a Declare method and confirms the name of the
 exchange, essential for automatically-named exchanges.
 """
 pass

 @synchronized_connection()
[docs] def exchange_delete(self, exchange, if_unused=False, nowait=False):
 """Delete an exchange

 This method deletes an exchange.

 * If the exchange does not exist, the server must raise a channel exception. When an
 exchange is deleted, all queue bindings on the exchange are cancelled.
 * If `if_unused` is set, and the exchange has queue bindings, the server must raise a
 channel exception.

 :param str exchange: exchange name
 :param bool if_unused: delete only if unused (has no queue bindings)
 :param bool nowait: if set, the server will not respond to the method and the client should
 not wait for a reply
 :raise NotFound: if exchange with `exchange` does not exist
 :raise PreconditionFailed: if attempting to delete a queue with bindings and `if_unused` is
 set
 :return: None
 """
 args = AMQPWriter()
 args.write_short(0)
 args.write_shortstr(exchange)
 args.write_bit(if_unused)
 args.write_bit(nowait)
 self._send_method(Method(spec.Exchange.Delete, args))

 if not nowait:
 return self.wait(spec.Exchange.DeleteOk)

 def _cb_exchange_delete_ok(self, method):
 """Confirm deletion of an exchange

 The server sends this method to confirm that the deletion of an exchange was successful.
 """
 pass

 @synchronized_connection()
[docs] def exchange_bind(self, dest_exch, source_exch='', routing_key='', nowait=False,
 arguments=None):
 """Bind an exchange to an exchange

 * Both the `dest_exch` and `source_exch` must already exist. Blank exchange names mean
 the default exchange.
 * A server MUST allow and ignore duplicate bindings - that is, two or more bind methods
 for a specific exchanges, with identical arguments - without treating these as an error.
 * A server MUST allow cycles of exchange bindings to be created including allowing an
 exchange to be bound to itself.
 * A server MUST not deliver the same message more than once to a destination exchange,
 even if the topology of exchanges and bindings results in multiple (even infinite)
 routes to that exchange.

 :param str dest_exch: name of destination exchange to bind
 :param str source_exch: name of source exchange to bind
 :param str routing_key: routing key for the binding (note: not all exchanges use a
 routing key)
 :param bool nowait: if set, the server will not respond to the method and the client
 should not wait for a reply
 :param dict arguments: binding arguments, specific to the exchange class
 """
 arguments = {} if arguments is None else arguments
 args = AMQPWriter()
 args.write_short(0)
 args.write_shortstr(dest_exch)
 args.write_shortstr(source_exch)
 args.write_shortstr(routing_key)
 args.write_bit(nowait)
 args.write_table(arguments)
 self._send_method(Method(spec.Exchange.Bind, args))

 if not nowait:
 return self.wait(spec.Exchange.BindOk)

 @synchronized_connection()
[docs] def exchange_unbind(self, dest_exch, source_exch='', routing_key='', nowait=False,
 arguments=None):
 """Unbind an exchange from an exchange

 * If the unbind fails, the server must raise a connection exception. The server must not
 attempt to unbind an exchange that does not exist from an exchange.
 * Blank exchange names mean the default exchange.

 :param str dest_exch: destination exchange name
 :param str source_exch: source exchange name
 :param str routing_key: routing key to unbind
 :param bool nowait: if set, the server will not respond to the method and the client
 should not wait for a reply
 :param dict arguments: binding arguments, specific to the exchange class
 """
 arguments = {} if arguments is None else arguments
 args = AMQPWriter()
 args.write_short(0)
 args.write_shortstr(dest_exch)
 args.write_shortstr(source_exch)
 args.write_shortstr(routing_key)
 args.write_bit(nowait)
 args.write_table(arguments)
 self._send_method(Method(spec.Exchange.Unbind, args))

 if not nowait:
 return self.wait(spec.Exchange.UnbindOk)

 def _cb_exchange_bind_ok(self, method):
 """Confirm bind successful

 The server sends this method to confirm that the bind was successful.
 """
 pass

 def _cb_exchange_unbind_ok(self, method):
 """Confirm unbind successful

 The server sends this method to confirm that the unbind was successful.
 """
 pass

 @synchronized_connection()
[docs] def queue_bind(self, queue, exchange='', routing_key='', nowait=False, arguments=None):
 """Bind queue to an exchange

 This method binds a queue to an exchange. Until a queue is bound it will not receive any
 messages. In a classic messaging model, store-and-forward queues are bound to a dest
 exchange and subscription queues are bound to a dest_wild exchange.

 * The server must allow and ignore duplicate bindings without treating these as an error.
 * If a bind fails, the server must raise a connection exception.
 * The server must not allow a durable queue to bind to a transient exchange. If a client
 attempts this, the server must raise a channel exception.
 * The server should support at least 4 bindings per queue, and ideally, impose no limit
 except as defined by available resources.

 * If the client did not previously declare a queue, and the `queue` is empty, the server
 must raise a connection exception with reply code 530 (not allowed).
 * If `queue` does not exist, the server must raise a channel exception with reply code
 404 (not found).
 * If `exchange` does not exist, the server must raise a channel exception with reply code
 404 (not found).

 :param str queue: name of queue to bind; blank refers to the last declared queue for this
 channel
 :param str exchange: name of exchange to bind to
 :param str routing_key: routing key for the binding
 :param bool nowait: if set, the server will not respond to the method and the client
 should not wait for a reply
 :param dict arguments: binding arguments, specific to the exchange class
 """
 arguments = {} if arguments is None else arguments
 args = AMQPWriter()
 args.write_short(0)
 args.write_shortstr(queue)
 args.write_shortstr(exchange)
 args.write_shortstr(routing_key)
 args.write_bit(nowait)
 args.write_table(arguments)
 self._send_method(Method(spec.Queue.Bind, args))

 if not nowait:
 return self.wait(spec.Queue.BindOk)

 def _cb_queue_bind_ok(self, method):
 """Confirm bind successful

 The server sends this method to confirm that the bind was successful.
 """
 pass

 @synchronized_connection()
[docs] def queue_unbind(self, queue, exchange, routing_key='', nowait=False, arguments=None):
 """Unbind a queue from an exchange

 This method unbinds a queue from an exchange.

 * If a unbind fails, the server MUST raise a connection exception.
 * The client must not attempt to unbind a queue that does not exist.
 * The client must not attempt to unbind a queue from an exchange that does not exist.

 :param str queue: name of queue to unbind, leave blank to refer to the last declared
 queue on this channel
 :param str exchange: name of exchange to unbind, leave blank to refer to default exchange
 :param str routing_key: routing key of binding
 :param dict arguments: binding arguments, specific to the exchange class
 """
 arguments = {} if arguments is None else arguments
 args = AMQPWriter()
 args.write_short(0)
 args.write_shortstr(queue)
 args.write_shortstr(exchange)
 args.write_shortstr(routing_key)
 # args.write_bit(nowait)
 args.write_table(arguments)
 self._send_method(Method(spec.Queue.Unbind, args))

 if not nowait:
 return self.wait(spec.Queue.UnbindOk)

 def _cb_queue_unbind_ok(self, method):
 """Confirm unbind successful

 This method confirms that the unbind was successful.
 """
 pass

 @synchronized_connection()
[docs] def queue_declare(self, queue='', passive=False, durable=False, exclusive=False,
 auto_delete=True, nowait=False,
 arguments=None):
 """Declare queue, create if needed

 This method creates or checks a queue. When creating a new queue the client can specify
 various properties that control the durability of the queue and its contents, and the level
 of sharing for the queue. A tuple containing the queue name, message count, and consumer
 count is returned, which is essential for declaring automatically named queues.

 * If `passive` is specified, the server state is not modified (a queue will not be
 declared), and the server only checks if the specified queue exists and returns its
 properties. If the queue does not exist, the server must raise a 404 NOT FOUND channel
 exception.
 * The server must create a default binding for a newly-created queue to the default
 exchange, which is an exchange of type 'direct'.
 * Queue names starting with 'amq.' are reserved for use by the server. If an attempt is
 made to declare a queue with such a name, and the `passive` flag is disabled, the server
 must raise a 403 ACCESS REFUSED connection exception.
 * The server must raise a 405 RESOURCE LOCKED channel exception if an attempt is made to
 access a queue declared as exclusive by another open connection.
 * The server must ignore the `auto_delete` flag if the queue already exists.

 RabbitMQ supports the following useful additional arguments:

 * x-max-length (int): maximum queue size
 * Queue length is a measure that takes into account ready messages, ignoring
 unacknowledged messages and message size. Messages will be dropped or dead-lettered
 from the front of the queue to make room for new messages once the limit is reached.

 :param str queue: queue name; leave blank to let the server generate a name automatically
 :param bool passive: do not create queue; client can use this to check whether a queue
 exists
 :param bool durable: mark as durable (remain active after server restarts)
 :param bool exclusive: mark as exclusive (can only be consumed from by this connection);
 implies `auto_delete`
 :param bool auto_delete: auto-delete queue when all consumers have finished using it
 :param bool nowait: if set, the server will not respond to the method and the client
 should not wait for a reply
 :param dict arguments: exchange declare arguments
 :raise NotFound: if `passive` is enabled and the queue does not exist
 :raise AccessRefused: if an attempt is made to declare a queue with a reserved name
 :raise ResourceLocked: if an attempt is made to access an exclusive queue declared by
 another open connection
 :return: queue_declare_ok_t(queue, message_count, consumer_count), or None if `nowait`
 :rtype: queue_declare_ok_t or None
 """
 arguments = arguments or {}
 args = AMQPWriter()
 args.write_short(0)
 args.write_shortstr(queue)
 args.write_bit(passive)
 args.write_bit(durable)
 args.write_bit(exclusive)
 args.write_bit(auto_delete)
 args.write_bit(nowait)
 args.write_table(arguments)
 self._send_method(Method(spec.Queue.Declare, args))

 if not nowait:
 return self.wait(spec.Queue.DeclareOk)

 def _cb_queue_declare_ok(self, method):
 """Confirm a queue declare

 This method is called when the server responds to a `queue.declare`.

 :return: queue_declare_ok_t(queue, message_count, consumer_count), or None if `nowait`
 :rtype: queue_declare_ok_t or None
 """
 args = method.args
 return queue_declare_ok_t(args.read_shortstr(), args.read_long(), args.read_long())

 @synchronized_connection()
[docs] def queue_delete(self, queue='', if_unused=False, if_empty=False, nowait=False):
 """Delete a queue

 This method deletes a queue. When a queue is deleted any pending messages are sent to a
 dead-letter queue if this is defined in the server configuration, and all consumers on the
 queue are cancelled.

 :param str queue: name of queue to delete, empty string refers to last declared queue on
 this channel
 :param bool if_unused: delete only if unused (has no consumers); raise a channel
 exception otherwise
 :param bool if_empty: delete only if empty; raise a channel exception otherwise
 :param bool nowait: if set, the server will not respond to the method and the client
 should not wait for a reply
 :raise NotFound: if `queue` does not exist
 :raise PreconditionFailed: if `if_unused` or `if_empty` conditions are not met
 :return: number of messages deleted
 :rtype: int
 """
 args = AMQPWriter()
 args.write_short(0)
 args.write_shortstr(queue)
 args.write_bit(if_unused)
 args.write_bit(if_empty)
 args.write_bit(nowait)
 self._send_method(Method(spec.Queue.Delete, args))

 if not nowait:
 return self.wait(spec.Queue.DeleteOk)

 def _cb_queue_delete_ok(self, method):
 """Confirm deletion of a queue

 This method confirms the deletion of a queue.

 PARAMETERS:
 message_count: long

 number of messages purged

 Reports the number of messages purged.
 """
 args = method.args
 return args.read_long()

 @synchronized_connection()
[docs] def queue_purge(self, queue='', nowait=False):
 """Purge a queue

 This method removes all messages from a queue. It does not cancel consumers. Purged messages
 are deleted without any formal "undo" mechanism.

 * On transacted channels the server MUST not purge messages that have already been sent
 to a client but not yet acknowledged.
 * If nowait is False, this method returns a message count.

 :param str queue: queue name to purge; leave blank to refer to last declared queue for
 this channel
 :param bool nowait: if set, the server will not respond to the method and the client
 should not wait for a reply
 :return: message count (if nowait is False)
 :rtype: int or None
 """
 args = AMQPWriter()
 args.write_short(0)
 args.write_shortstr(queue)
 args.write_bit(nowait)
 self._send_method(Method(spec.Queue.Purge, args))

 if not nowait:
 return self.wait(spec.Queue.PurgeOk)

 def _cb_queue_purge_ok(self, method):
 """Confirms a queue purge

 This method confirms the purge of a queue.

 PARAMETERS:
 message_count: long

 number of messages purged

 Reports the number of messages purged.
 """
 args = method.args
 return args.read_long()

 @synchronized_connection()
[docs] def basic_ack(self, delivery_tag, multiple=False):
 """Acknowledge one or more messages

 This method acknowledges one or more messages delivered via the Deliver or Get-Ok methods.
 The client can ask to confirm a single message or a set of messages up to and including a
 specific message.

 * The delivery tag is valid only within the same channel that the message was received.
 * Set `delivery_tag` to `0` and `multiple` to `True` to acknowledge all outstanding
 messages.
 * If the `delivery_tag` is invalid, the server must raise a channel exception.

 :param int delivery_tag: server-assigned delivery tag; 0 means "all messages received so
 far"
 :param bool multiple: if set, the `delivery_tag` is treated as "all messages up to and
 including"
 """
 args = AMQPWriter()
 args.write_longlong(delivery_tag)
 args.write_bit(multiple)
 self._send_method(Method(spec.Basic.Ack, args))

 @synchronized_connection()
[docs] def basic_cancel(self, consumer_tag, nowait=False):
 """End a queue consumer

 This method cancels a consumer. This does not affect already delivered messages, but it does
 mean the server will not send any more messages for that consumer. The client may receive an
 arbitrary number of messages in between sending the cancel method and receiving the
 cancel-ok reply.

 * If the queue no longer exists when the client sends a cancel command, or the consumer
 has been cancelled for other reasons, this command has no effect.

 :param str consumer_tag: consumer tag, valid only within the current connection and channel
 :param bool nowait: if set, the server will not respond to the method and the client
 should not wait for a reply
 """
 if self.connection is not None:
 self.no_ack_consumers.discard(consumer_tag)
 args = AMQPWriter()
 args.write_shortstr(consumer_tag)
 args.write_bit(nowait)
 self._send_method(Method(spec.Basic.Cancel, args))
 return self.wait(spec.Basic.CancelOk)

 def _cb_basic_cancel_notify(self, method):
 """Consumer cancelled by server.

 Most likely the queue was deleted.
 """
 args = method.args
 consumer_tag = args.read_shortstr()
 callback = self._on_cancel(consumer_tag)
 if callback:
 callback(consumer_tag)
 else:
 raise ConsumerCancelled(consumer_tag, spec.Basic.Cancel)

 def _cb_basic_cancel_ok(self, method):
 """Confirm a cancelled consumer

 This method confirms that the cancellation was completed.

 PARAMETERS: consumer_tag: shortstr

 consumer tag

 Identifier for the consumer, valid within the current connection.

 RULE:

 The consumer tag is valid only within the channel from which the consumer was
 created. I.e. a client
 MUST NOT create a consumer in one channel and then use it in another.
 """
 args = method.args
 consumer_tag = args.read_shortstr()
 self._on_cancel(consumer_tag)

 def _on_cancel(self, consumer_tag):
 """
 :param consumer_tag:
 :return: callback, if any
 :rtype: callable or None
 """
 self.callbacks.pop(consumer_tag, None)
 return self.cancel_callbacks.pop(consumer_tag, None)

 @synchronized_connection()
[docs] def basic_consume(self, queue='', consumer_tag='', no_local=False, no_ack=False,
 exclusive=False, nowait=False, callback=None, arguments=None, on_cancel=None):
 """Start a queue consumer

 This method asks the server to start a "consumer", which is a transient request for messages
 from a specific queue. Consumers last as long as the channel they were created on, or until
 the client cancels them.

 * The `consumer_tag` is local to a connection, so two clients can use the same consumer
 tags. But on the same connection, the `consumer_tag` must be unique, or the server must
 raise a 530 NOT ALLOWED connection exception.
 * If `no_ack` is set, the server automatically acknowledges each message on behalf of the
 client.
 * If `exclusive` is set, the client asks for this consumer to have exclusive access to
 the queue. If the server cannot grant exclusive access to the queue because there are
 other consumers active, it must raise a 403 ACCESS REFUSED channel exception.
 * `callback` must be a `Callable(message)` which is called for each messaged delivered by
 the broker. If no callback is specified, messages are quietly discarded; `no_ack` should
 probably be set to True in that case.

 :param str queue: name of queue; if None, refers to last declared queue for this channel
 :param str consumer_tag: consumer tag, local to the connection
 :param bool no_local: if True: do not deliver own messages
 :param bool no_ack: server will not expect an ack for each message
 :param bool exclusive: request exclusive access
 :param bool nowait: if set, the server will not respond to the method and the client
 should not wait for a reply
 :param Callable callback: a callback callable(message) for each delivered message
 :param dict arguments: AMQP method arguments
 :param Callable on_cancel: a callback callable
 :return: consumer tag
 :rtype: str
 """
 args = AMQPWriter()
 args.write_short(0)
 args.write_shortstr(queue)
 args.write_shortstr(consumer_tag)
 args.write_bit(no_local)
 args.write_bit(no_ack)
 args.write_bit(exclusive)
 args.write_bit(nowait)
 args.write_table(arguments or {})
 self._send_method(Method(spec.Basic.Consume, args))

 if not nowait:
 consumer_tag = self.wait(spec.Basic.ConsumeOk)

 self.callbacks[consumer_tag] = callback

 if on_cancel:
 self.cancel_callbacks[consumer_tag] = on_cancel

 if no_ack:
 self.no_ack_consumers.add(consumer_tag)

 return consumer_tag

 def _cb_basic_consume_ok(self, method):
 """Confirm a new consumer

 The server provides the client with a consumer tag, which is used by the client for methods
 called on the consumer at a later stage.

 PARAMETERS:

 consumer_tag: shortstr

 Holds the consumer tag specified by the client or provided by the server.
 """
 args = method.args
 return args.read_shortstr()

 def _cb_basic_deliver(self, method):
 """Notify the client of a consumer message

 This method delivers a message to the client, via a consumer. In the asynchronous message
 delivery model, the client starts a consumer using the Consume method, then the server
 responds with Deliver methods as and when messages arrive for that consumer.

 This method can be called in a "classmethod" style static-context and is done so by
 :meth:`~amqpy.connection.Connection.drain_events()`.

 RULE:

 The server SHOULD track the number of times a message has been delivered to clients and
 when a message is redelivered a certain number of times - e.g. 5 times - without being
 acknowledged, the server SHOULD consider the message to be unprocessable (possibly
 causing client applications to abort), and move the message to a dead letter queue.

 PARAMETERS:

 consumer_tag: shortstr

 consumer tag

 Identifier for the consumer, valid within the current connection.

 RULE:

 The consumer tag is valid only within the channel from which the consumer was
 created. I.e. a client
 MUST NOT create a consumer in one channel and then use it in another.

 delivery_tag: longlong

 server-assigned delivery tag

 The server-assigned and channel-specific delivery tag

 RULE:

 The delivery tag is valid only within the channel from which the message was
 received I.e. a
 client MUST NOT receive a message on one channel and then acknowledge it on
 another.

 RULE:

 The server MUST NOT use a zero value for delivery tags Zero is reserved for
 client use, meaning
 "all messages so far received".

 redelivered: boolean

 message is being redelivered

 This indicates that the message has been previously delivered to this or another
 client.

 exchange: shortstr

 Specifies the name of the exchange that the message was originally published to.

 routing_key: shortstr

 Message routing key

 Specifies the routing key name specified when the message was published.
 """
 args = method.args
 msg = method.content

 consumer_tag = args.read_shortstr()
 delivery_tag = args.read_longlong()
 redelivered = args.read_bit()
 exchange = args.read_shortstr()
 routing_key = args.read_shortstr()

 msg.channel = self
 msg.delivery_info = {
 'consumer_tag': consumer_tag,
 'delivery_tag': delivery_tag,
 'redelivered': redelivered,
 'exchange': exchange,
 'routing_key': routing_key,
 }

 callback = self.callbacks.get(consumer_tag)
 if callback:
 callback(msg)
 else:
 raise Exception('No callback available for consumer tag: {}'.format(consumer_tag))

 @synchronized_connection()
[docs] def basic_get(self, queue='', no_ack=False):
 """Directly get a message from the `queue`

 This method is non-blocking. If no messages are available on the queue, `None` is returned.

 :param str queue: queue name; leave blank to refer to last declared queue for the channel
 :param bool no_ack: if enabled, the server automatically acknowledges the message
 :return: message, or None if no messages are available on the queue
 :rtype: amqpy.message.Message or None
 """
 args = AMQPWriter()
 args.write_short(0)
 args.write_shortstr(queue)
 args.write_bit(no_ack)
 self._send_method(Method(spec.Basic.Get, args))
 return self.wait_any([spec.Basic.GetOk, spec.Basic.GetEmpty])

 def _cb_basic_get_empty(self, method):
 """Indicate no messages available

 This method tells the client that the queue has no messages
 available for the client.
 """
 args = method.args
 args.read_shortstr()

 def _cb_basic_get_ok(self, method):
 """Provide client with a message

 This method delivers a message to the client following a get method. A message delivered
 by 'get-ok' must be acknowledged unless the no-ack option was set in the get method.

 PARAMETERS:

 delivery_tag: longlong

 server-assigned delivery tag

 The server-assigned and channel-specific delivery tag

 RULE:

 The delivery tag is valid only within the channel from which the message was
 received I.e. a
 client MUST NOT receive a message on one channel and then acknowledge it on
 another.

 RULE:

 The server MUST NOT use a zero value for delivery tags Zero is reserved for
 client use, meaning
 "all messages so far received".

 redelivered: boolean

 message is being redelivered

 This indicates that the message has been previously delivered to this or another
 client.

 exchange: shortstr

 Specifies the name of the exchange that the message was originally published to.
 If empty, the message
 was published to the default exchange.

 routing_key: shortstr

 Message routing key

 Specifies the routing key name specified when the message was published.

 message_count: long

 number of messages pending

 This field reports the number of messages pending on the queue, excluding the
 message being delivered.
 Note that this figure is indicative, not reliable, and can change arbitrarily as
 messages are added to
 the queue and removed by other clients.
 """
 args = method.args
 msg = method.content

 delivery_tag = args.read_longlong()
 redelivered = args.read_bit()
 exchange = args.read_shortstr()
 routing_key = args.read_shortstr()
 message_count = args.read_long()

 msg.channel = self
 msg.delivery_info = {
 'delivery_tag': delivery_tag,
 'redelivered': redelivered,
 'exchange': exchange,
 'routing_key': routing_key,
 'message_count': message_count
 }
 return msg

 def _basic_publish(self, msg, exchange='', routing_key='', mandatory=False, immediate=False):
 args = AMQPWriter()
 args.write_short(0)
 args.write_shortstr(exchange)
 args.write_shortstr(routing_key)
 args.write_bit(mandatory)
 args.write_bit(immediate)

 self._send_method(Method(spec.Basic.Publish, args, msg))

 @synchronized_connection()
[docs] def basic_publish(self, msg, exchange='', routing_key='', mandatory=False, immediate=False):
 """Publish a message

 This method publishes a message to a specific exchange. The message will be routed to
 queues as defined by the exchange configuration and distributed to any active consumers when
 the transaction, if any, is committed.

 If publisher confirms are enabled, this method will automatically wait to receive an "ack"
 from the server.

 .. note::

 Returned messages are sent back from the server and loaded into
 the `returned_messages` queue of the channel that sent them. In
 order to receive all returned messages, call `loop(0)` on the
 connection object before checking the channel's
 `returned_messages` queue.

 :param msg: message
 :param str exchange: exchange name, empty string means default exchange
 :param str routing_key: routing key
 :param bool mandatory: True: deliver to at least one queue, or return it; False: drop the
 unroutable message
 :param bool immediate: request immediate delivery
 :type msg: amqpy.Message
 """
 self._basic_publish(msg, exchange, routing_key, mandatory, immediate)
 if self.mode == self.CH_MODE_CONFIRM:
 self.wait(spec.Basic.Ack)

 @synchronized_connection()
[docs] def basic_qos(self, prefetch_size=0, prefetch_count=0, a_global=False):
 """Specify quality of service

 This method requests a specific quality of service. The QoS can be specified for the
 current channel or for all channels on the connection. The particular properties and
 semantics of a qos method always depend on the content class semantics. Though the qos
 method could in principle apply to both peers, it is currently meaningful only for the
 server.

 * The client can request that messages be sent in advance so that when the client finishes
 processing a message, the following message is already held locally, rather than needing
 to be sent down the channel. Prefetching gives a performance improvement. This field
 specifies the prefetch window size in octets. The server will send a message in advance
 if it is equal to or smaller in size than the available prefetch size (and also falls
 into other prefetch limits). May be set to zero, meaning "no specific limit", although
 other prefetch limits may still apply. The prefetch-size is ignored if the no-ack option
 is set.
 * The server must ignore `prefetch_size` setting when the client is not processing any
 messages - i.e. the prefetch size does not limit the transfer of single messages to a
 client, only the sending in advance of more messages while the client still has one or
 more unacknowledged messages.
 * The `prefetch_count` specifies a prefetch window in terms of whole messages. This field
 may be used in combination with the prefetch-size field; a message will only be sent in
 advance if both prefetch windows (and those at the channel and connection level) allow
 it. The prefetch-count is ignored if the no-ack option is set.
 * The server may send less data in advance than allowed by the client's specified
 prefetch windows but it must not send more.

 :param int prefetch_size: prefetch window in octets
 :param int prefetch_count: prefetch window in messages
 :param bool a_global: apply to entire connection (default is for current channel only)
 """
 args = AMQPWriter()
 args.write_long(prefetch_size)
 args.write_short(prefetch_count)
 args.write_bit(a_global)
 self._send_method(Method(spec.Basic.Qos, args))
 return self.wait(spec.Basic.QosOk)

 def _cb_basic_qos_ok(self, method):
 """Confirm the requested qos

 This method tells the client that the requested QoS levels could be handled by the server.
 The requested QoS applies to all active consumers until a new QoS is defined.
 """
 pass

 @synchronized_connection()
[docs] def basic_recover(self, requeue=False):
 """Redeliver unacknowledged messages

 This method asks the broker to redeliver all unacknowledged messages on a specified
 channel. Zero or more messages may be redelivered. This method is only allowed on
 non-transacted channels.

 * The server MUST set the redelivered flag on all messages that are resent.
 * The server MUST raise a channel exception if this is called on a transacted channel.

 :param bool requeue: if set, the server will attempt to requeue the message, potentially
 then delivering it to a different subscriber
 """
 args = AMQPWriter()
 args.write_bit(requeue)
 self._send_method(Method(spec.Basic.Recover, args))

 @synchronized_connection()
[docs] def basic_recover_async(self, requeue=False):
 """Redeliver unacknowledged messages (async)

 This method asks the broker to redeliver all unacknowledged messages on a specified
 channel. Zero or more messages may be redelivered. This method is only allowed on
 non-transacted channels.

 * The server MUST set the redelivered flag on all messages that are resent.
 * The server MUST raise a channel exception if this is called on a transacted channel.

 :param bool requeue: if set, the server will attempt to requeue the message, potentially
 then delivering it to a different subscriber
 """
 args = AMQPWriter()
 args.write_bit(requeue)
 self._send_method(Method(spec.Basic.RecoverAsync, args))

 def _cb_basic_recover_ok(self, method):
 """In 0-9-1 the deprecated recover solicits a response
 """
 pass

 @synchronized_connection()
[docs] def basic_reject(self, delivery_tag, requeue):
 """Reject an incoming message

 This method allows a client to reject a message. It can be used to interrupt and cancel
 large incoming messages,
 or return untreatable messages to their original queue.

 * The server SHOULD be capable of accepting and process the Reject method while sending
 message content with a Deliver or Get-Ok method I.e. the server should read and process
 incoming methods while sending output frames. To cancel a partially-send content, the
 server sends a content body frame of size 1 (i.e. with no data except the frame-end
 octet).
 * The server SHOULD interpret this method as meaning that the client is unable to process
 the message at this time.
 * A client MUST NOT use this method as a means of selecting messages to process A
 rejected message MAY be discarded or dead-lettered, not necessarily passed to another
 client.
 * The server MUST NOT deliver the message to the same client within the context of the
 current channel. The recommended strategy is to attempt to deliver the message to an
 alternative consumer, and if that is not possible, to move the message to a dead-letter
 queue. The server MAY use more sophisticated tracking to hold the message on the queue and
 redeliver it to the same client at a later stage.

 :param int delivery_tag: server-assigned channel-specific delivery tag
 :param bool requeue: True: requeue the message; False: discard the message
 """
 args = AMQPWriter()
 args.write_longlong(delivery_tag)
 args.write_bit(requeue)
 self._send_method(Method(spec.Basic.Reject, args))

 def _cb_basic_return(self, method):
 """Return a failed message

 This method returns an undeliverable message that was published with the `immediate` flag
 set, or an unroutable message published with the `mandatory` flag set. The reply code and
 text provide information about the reason that the message was undeliverable.
 """
 args = method.args
 msg = method.content
 self.returned_messages.put(basic_return_t(
 args.read_short(),
 args.read_shortstr(),
 args.read_shortstr(),
 args.read_shortstr(),
 msg,
))

 @synchronized_connection()
[docs] def tx_commit(self):
 """Commit the current transaction

 This method commits all messages published and acknowledged in the current transaction. A
 new transaction starts immediately after a commit.
 """
 self._send_method(Method(spec.Tx.Commit))
 return self.wait(spec.Tx.CommitOk)

 def _cb_tx_commit_ok(self, method):
 """Confirm a successful commit

 This method confirms to the client that the commit succeeded. Note that if a commit fails,
 the server raises a channel exception.
 """
 pass

 @synchronized_connection()
[docs] def tx_rollback(self):
 """Abandon the current transaction

 This method abandons all messages published and acknowledged in the current transaction. A
 new transaction starts immediately after a rollback.
 """
 self._send_method(Method(spec.Tx.Rollback))
 return self.wait(spec.Tx.RollbackOk)

 def _cb_tx_rollback_ok(self, method):
 """Confirm a successful rollback

 This method confirms to the client that the rollback succeeded. Note that if an rollback
 fails, the server raises a channel exception.
 """
 pass

 @synchronized_connection()
[docs] def tx_select(self):
 """Select standard transaction mode

 This method sets the channel to use standard transactions. The client must use this method
 at least once on a channel before using the Commit or Rollback methods.

 The channel must not be in publish acknowledge mode. If it is, the server raises a
 :exc:`PreconditionFailed` exception and closes the channel. Note that amqpy will
 automatically reopen the channel, at which point this method can be called again
 successfully.

 :raise PreconditionFailed: if the channel is in publish acknowledge mode
 """
 self._send_method(Method(spec.Tx.Select))
 #self.wait(spec.Tx.SelectOk)
 self.wait(spec.Tx.SelectOk)
 self.mode = self.CH_MODE_TX

 def _cb_tx_select_ok(self, method):
 """Confirm transaction mode

 This method confirms to the client that the channel was successfully set to use standard
 transactions.
 """
 pass

 @synchronized_connection()
[docs] def confirm_select(self, nowait=False):
 """Enable publisher confirms for this channel (RabbitMQ extension)

 The channel must not be in transactional mode. If it is, the server raises a
 :exc:`PreconditionFailed` exception and closes the channel. Note that amqpy will
 automatically reopen the channel, at which point this method can be called again
 successfully.

 :param bool nowait: if set, the server will not respond to the method and the client
 should not wait for a reply
 :raise PreconditionFailed: if the channel is in transactional mode
 """
 args = AMQPWriter()
 args.write_bit(nowait)

 self._send_method(Method(spec.Confirm.Select, args))
 if not nowait:
 self.wait(spec.Confirm.SelectOk)
 self.mode = self.CH_MODE_CONFIRM

 def _cb_confirm_select_ok(self, method):
 """With this method, the broker confirms to the client that the channel is now using
 publisher confirms
 """
 pass

 def _cb_basic_ack_recv(self, method):
 """Callback for receiving a `spec.Basic.Ack`

 This will be called when the server acknowledges a published message (RabbitMQ extension).
 """
 # args = method.args
 # delivery_tag = args.read_longlong()
 # multiple = args.read_bit()

 METHOD_MAP = {
 spec.Channel.OpenOk: _cb_open_ok,
 spec.Channel.Flow: _cb_flow,
 spec.Channel.FlowOk: _cb_flow_ok,
 spec.Channel.Close: _cb_close,
 spec.Channel.CloseOk: _cb_close_ok,
 spec.Exchange.DeclareOk: _cb_exchange_declare_ok,
 spec.Exchange.DeleteOk: _cb_exchange_delete_ok,
 spec.Exchange.BindOk: _cb_exchange_bind_ok,
 spec.Exchange.UnbindOk: _cb_exchange_unbind_ok,
 spec.Queue.DeclareOk: _cb_queue_declare_ok,
 spec.Queue.BindOk: _cb_queue_bind_ok,
 spec.Queue.PurgeOk: _cb_queue_purge_ok,
 spec.Queue.DeleteOk: _cb_queue_delete_ok,
 spec.Queue.UnbindOk: _cb_queue_unbind_ok,
 spec.Basic.QosOk: _cb_basic_qos_ok,
 spec.Basic.ConsumeOk: _cb_basic_consume_ok,
 spec.Basic.Cancel: _cb_basic_cancel_notify,
 spec.Basic.CancelOk: _cb_basic_cancel_ok,
 spec.Basic.Return: _cb_basic_return,
 spec.Basic.Deliver: _cb_basic_deliver,
 spec.Basic.GetOk: _cb_basic_get_ok,
 spec.Basic.GetEmpty: _cb_basic_get_empty,
 spec.Basic.Ack: _cb_basic_ack_recv,
 spec.Basic.RecoverOk: _cb_basic_recover_ok,
 spec.Confirm.SelectOk: _cb_confirm_select_ok,
 spec.Tx.SelectOk: _cb_tx_select_ok,
 spec.Tx.CommitOk: _cb_tx_commit_ok,
 spec.Tx.RollbackOk: _cb_tx_rollback_ok,
 }

 © Copyright 2014, V G.
 Created using Sphinx 1.3.5.

