amqpy

Release 0.13.1

May 22, 2016

Contents

10

11

12

13

amgqpy.connection module
amgqpy.channel module
amqpy.message module
amqpy.consumer module
amgqpy.spec module
amqpy.proto module
amqpy.exceptions module

Introduction

8.1 Guarantees e e e

Quickstart
Notes
Features
Testing

Indices and Tables

Python Module Index

19

21

23

25

29

33

....................... 33

35

37

39

41

43

45

amqgpy, Release 0.13.1

API documentation:

Contents 1

amqpy, Release 0.13.1

2 Contents

CHAPTER 1

amgpy.connection module

AMQP Connections

class amgpy . connection.Connection (amgpy.abstract_channel. AbstractChannel)
Bases: amgpy .abstract_channel.AbstractChannel

The connection class provides methods for a client to establish a network connection to a server, and for both
peers to operate the connection thereafter

connected
@property

Check if connection is connected
Returns True if connected, else False
Return type bool

server_capabilities
@property

Get server capabilities

These properties are set only after successfully connecting.
Returns server capabilities
Return type dict

sock
@property

Access underlying TCP socket
Returns socket
Return type socket.socket

channels = None
Map of {channel_id: Channel} for all active channels

Type dict[int, Channel]
transport = None

Type amgqpy.transport.Transport

http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/stdtypes.html#dict
http://docs.python.org/3.4/library/socket.html#socket.socket

amqpy, Release 0.13.1

__init__ (host=’localhost’, port=5672, ssl=None, connect_timeout=None, userid="guest’,
password="guest’, login_method="AMQPLAIN’, virtual_host="/", locale="en_US’,
channel_max=65535, frame_max=131072, heartbeat=0, client_properties=None,

on_blocked=None, on_unblocked=None)
Create a connection to the specified host

If you are using SSL, make sure the correct port number is specified (usually 5671), as the default of 5672
is for non-SSL connections.

Parameters
¢ host (str)—host
* port (int) - port

* ssl (dict or None) - dict of SSL options passed to ss1.wrap_socket (), None
to disable SSL

e connect_timeout (float or None)- connect timeout

* userid (st r)—username

* password (st r)— password

* login_method (st r) — login method (this is server-specific); default is for RabbitMQ
e virtual_ host (str)— virtual host

* locale (str)—locale

¢ channel_max (1nt)— maximum number of channels

e frame_max (int)— maximum frame payload size in bytes

* heartbeat (f1oat) — heartbeat interval in seconds, O disables heartbeat

* client_properties (dict or None) - dict of client properties

e on_blocked (Callable or None)- callback on connection blocked

* on_unblocked (Callable or None) - callback on connection unblocked

channel (channel_id=None) — amqgpy.channel.Channel
Create a new channel, or fetch the channel associated with channel_id if specified

Parameters channel_id (int or None) - channel ID number
Returns Channel
Return type amqgpy.channel.Channel

close (reply_code=0, reply_text=""*, method_type=method_t(class_id=0, method_id=0)) — None
Close connection to the server

This method performs a connection close handshake with the server, then closes the underlying connection.

If this connection close is due to a client error, the client may provide a reply_code, reply_text, and
method_type to indicate to the server the reason for closing the connection.

Parameters
* reply_ code (int) —the reply code
* reply_ text (str) - localized reply text

* method_type (amgpy.spec.method_t) —if close is triggered by a failing method,
this is the method that caused it

4 Chapter 1. amqpy.connection module

http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/ssl.html#ssl.wrap_socket
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/stdtypes.html#str

amqgpy, Release 0.13.1

connect () — None
Connect using saved connection parameters

This method does not need to be called explicitly; it is called by the constructor during initialization.
Note: reconnecting invalidates all declarations (channels, queues, consumers, delivery tags, etc.).

drain_events (timeout=None) — None
‘Wait for an event on all channels

This method should be called after creating consumers in order to receive delivered messages and execute
consumer callbacks.

Parameters timeout (float or None)- maximum allowed time to wait for an event
Raises amgpy.exceptions. Timeout — if the operation times out

is_alive () — bool
Check if connection is alive

This method is the primary way to check if the connection is alive.

Side effects: This method may send a heartbeat as a last resort to check if the connection is alive.
Returns True if connection is alive, else False
Return type bool

loop (timeout=None) — None
Call drain_events () continuously

*Does not raise Timeout exceptions if a timeout occurs
Parameters timeout (float or None)- maximum allowed time to wait for an event

send_heartbeat () — None
Send a heartbeat to the server

http://docs.python.org/3.4/library/functions.html#bool

amqpy, Release 0.13.1

6 Chapter 1. amqpy.connection module

CHAPTER 2

amgpy.channel module

AMQP Channels

class amgpy . channel .Channel (amgpy.abstract_channel. AbstractChannel)

Bases: amgpy .abstract_channel.AbstractChannel

The channel class provides methods for a client to establish and operate an AMQP channel. All public members
are fully thread-safe.

CH_MODE_CONFIRM=2
Publisher confirm mode (RabbitMQ extension)

CH_MODE_NONE = ()
Default channel mode

CH_MODE _TxX=1
Transaction mode

active = None
Current channel active state (flow control)

Type bool

is_open = None
Current channel open/closed state

Type bool

mode = None
Channel mode state (default, transactional, publisher confirm)

Type int

returned_messages = None
Returned messages that the server was unable to deliver

Type queue.Queue

__init__ (connection, channel_id=None, auto_decode=True)
Create a channel bound to a connection and using the specified numeric channel_id, and open on the server

If auto_decode is enabled (default), incoming Message bodies will be automatically decoded to str if
possible.

Parameters

* connection (amgpy.connection.Connection) - the channel’s associated Con-
nection

amqpy, Release 0.13.1

* channel_id (int or None)—the channel’s assigned channel ID
* auto_decode (bool) —enable auto decoding of message bodies

basic_ack (delivery_tag, multiple=False) — None
Acknowledge one or more messages

This method acknowledges one or more messages delivered via the Deliver or Get-Ok methods. The client
can ask to confirm a single message or a set of messages up to and including a specific message.

*The delivery tag is valid only within the same channel that the message was received.
*Set delivery_tag to 0 and multiple to True to acknowledge all outstanding messages.

oIf the delivery_tag is invalid, the server must raise a channel exception.

Parameters

* delivery tag (int) — server-assigned delivery tag; 0 means “all messages received
so far”

* multiple (bool)—if set, the delivery_tag is treated as “all messages up to and includ-

t1)

ing

basic_cancel (consumer_tag, nowait=False) — None
End a queue consumer

This method cancels a consumer. This does not affect already delivered messages, but it does mean the
server will not send any more messages for that consumer. The client may receive an arbitrary number of
messages in between sending the cancel method and receiving the cancel-ok reply.

oIf the queue no longer exists when the client sends a cancel command, or the consumer has been
cancelled for other reasons, this command has no effect.

Parameters

* consumer_tag (str) — consumer tag, valid only within the current connection and
channel

* nowait (bool) — if set, the server will not respond to the method and the client should
not wait for a reply

basic_consume (queue=’‘, consumer_tag="", no_local=False, no_ack=False, exclusive=False,

nowait=False, callback=None, arguments=None, on_cancel=None) — str
Start a queue consumer

This method asks the server to start a “consumer”, which is a transient request for messages from a specific
queue. Consumers last as long as the channel they were created on, or until the client cancels them.

*The consumer_tag is local to a connection, so two clients can use the same consumer tags. But on the
same connection, the consumer_tag must be unique, or the server must raise a 530 NOT ALLOWED
connection exception.

*If no_ack is set, the server automatically acknowledges each message on behalf of the client.

oIf exclusive is set, the client asks for this consumer to have exclusive access to the queue. If the server
cannot grant exclusive access to the queue because there are other consumers active, it must raise a
403 ACCESS REFUSED channel exception.

ecallback must be a Callable(message) which is called for each messaged delivered by the broker. If
no callback is specified, messages are quietly discarded; no_ack should probably be set to True in that
case.

8 Chapter 2. amqpy.channel module

http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/functions.html#bool

amqgpy, Release 0.13.1

Parameters
* queue (str)—name of queue; if None, refers to last declared queue for this channel
* consumer_tag (str)— consumer tag, local to the connection
* no_local (bool)—if True: do not deliver own messages
* no_ack (bool) — server will not expect an ack for each message
* exclusive (bool) - request exclusive access

* nowait (bool) — if set, the server will not respond to the method and the client should
not wait for a reply

* callback (Callable)— a callback callable(message) for each delivered message
* arguments (dict) - AMQP method arguments
* on_cancel (Callable) - a callback callable
Returns consumer tag
Return type str
basic_get (queue=’", no_ack=False) — amgpy.message.Message or None
Directly get a message from the queue
This method is non-blocking. If no messages are available on the queue, None is returned.
Parameters
* queue (str)— queue name; leave blank to refer to last declared queue for the channel
* no_ack (bool) —if enabled, the server automatically acknowledges the message
Returns message, or None if no messages are available on the queue
Return type amqpy.message.Message or None

basic_publish (msg, exchange="", routing_key="*, mandatory=False, immediate=False) — None
Publish a message

This method publishes a message to a specific exchange. The message will be routed to queues as defined
by the exchange configuration and distributed to any active consumers when the transaction, if any, is
committed.

If publisher confirms are enabled, this method will automatically wait to receive an “ack” from the server.

Note: Returned messages are sent back from the server and loaded into the returned_messages queue of
the channel that sent them. In order to receive all returned messages, call loop(0) on the connection object
before checking the channel’s refurned_messages queue.

Parameters
* msg (amgpy . Message) — message
* exchange (st r) — exchange name, empty string means default exchange
* routing key (str) - routing key

* mandatory (bool) — True: deliver to at least one queue, or return it; False: drop the
unroutable message

e immediate (bool) - request immediate delivery

http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/stdtypes.html#dict
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool

amqpy, Release 0.13.1

basic_qgos (prefetch_size=0, prefetch_count=0, a_global=False) — None
Specify quality of service

This method requests a specific quality of service. The QoS can be specified for the current channel or for
all channels on the connection. The particular properties and semantics of a qos method always depend on
the content class semantics. Though the qos method could in principle apply to both peers, it is currently
meaningful only for the server.

*The client can request that messages be sent in advance so that when the client finishes processing
a message, the following message is already held locally, rather than needing to be sent down the
channel. Prefetching gives a performance improvement. This field specifies the prefetch window size
in octets. The server will send a message in advance if it is equal to or smaller in size than the available
prefetch size (and also falls into other prefetch limits). May be set to zero, meaning “no specific limit”,
although other prefetch limits may still apply. The prefetch-size is ignored if the no-ack option is set.

*The server must ignore prefetch_size setting when the client is not processing any messages - i.e. the
prefetch size does not limit the transfer of single messages to a client, only the sending in advance of
more messages while the client still has one or more unacknowledged messages.

*The prefetch_count specifies a prefetch window in terms of whole messages. This field may be used
in combination with the prefetch-size field; a message will only be sent in advance if both prefetch
windows (and those at the channel and connection level) allow it. The prefetch-count is ignored if the
no-ack option is set.

*The server may send less data in advance than allowed by the client’s specified prefetch windows but
it must not send more.

Parameters
* prefetch_size (int) - prefetch window in octets
* prefetch_count (int) — prefetch window in messages
* a_global (bool)— apply to entire connection (default is for current channel only)

basic_recover (requeue=False) — None
Redeliver unacknowledged messages

This method asks the broker to redeliver all unacknowledged messages on a specified channel. Zero or
more messages may be redelivered. This method is only allowed on non-transacted channels.

*The server MUST set the redelivered flag on all messages that are resent.
*The server MUST raise a channel exception if this is called on a transacted channel.

Parameters requeue (bool) — if set, the server will attempt to requeue the message, poten-
tially then delivering it to a different subscriber

basic_recover_async (requeue=False) — None
Redeliver unacknowledged messages (async)

This method asks the broker to redeliver all unacknowledged messages on a specified channel. Zero or
more messages may be redelivered. This method is only allowed on non-transacted channels.

*The server MUST set the redelivered flag on all messages that are resent.
*The server MUST raise a channel exception if this is called on a transacted channel.

Parameters requeue (bool) — if set, the server will attempt to requeue the message, poten-
tially then delivering it to a different subscriber

10 Chapter 2. amqpy.channel module

http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool

amqgpy, Release 0.13.1

basic_reject (delivery_tag, requeue) — None
Reject an incoming message

This method allows a client to reject a message. It can be used to interrupt and cancel large incoming
messages, or return untreatable messages to their original queue.

*The server SHOULD be capable of accepting and process the Reject method while sending message
content with a Deliver or Get-Ok method L.e. the server should read and process incoming methods
while sending output frames. To cancel a partially-send content, the server sends a content body frame
of size 1 (i.e. with no data except the frame-end octet).

*The server SHOULD interpret this method as meaning that the client is unable to process the message
at this time.

*A client MUST NOT use this method as a means of selecting messages to process A rejected message
MAY be discarded or dead-lettered, not necessarily passed to another client.

*The server MUST NOT deliver the message to the same client within the context of the current chan-
nel. The recommended strategy is to attempt to deliver the message to an alternative consumer, and
if that is not possible, to move the message to a dead-letter queue. The server MAY use more so-
phisticated tracking to hold the message on the queue and redeliver it to the same client at a later
stage.

Parameters
* delivery_tag (int)—server-assigned channel-specific delivery tag
* requeue (bool) - True: requeue the message; False: discard the message
close (reply_code=0, reply_text=""*, method_type=method_t(class_id=0, method_id=0)) — None
Request a channel close

This method indicates that the sender wants to close the channel. This may be due to internal conditions
(e.g. a forced shut-down) or due to an error handling a specific method, i.e. an exception When a close is
due to an exception, the sender provides the class and method id of the method which caused the exception.

Parameters
* reply code (int) — the reply code
* reply_ text (str)—localized reply text

* method_type (amgpy.spec.method_t) —if close is triggered by a failing method,
this is the method that caused it

confirm_select (nowait=False) — None
Enable publisher confirms for this channel (RabbitMQ extension)

The channel must not be in transactional mode. If it is, the server raises a PreconditionFailed
exception and closes the channel. Note that amqpy will automatically reopen the channel, at which point
this method can be called again successfully.

Parameters nowait (bool) — if set, the server will not respond to the method and the client
should not wait for a reply

Raises PreconditionFailed - if the channel is in transactional mode

¢ ¢

exchange_bind (dest_exch, source_exch="

) None
Bind an exchange to an exchange

, routing_key="‘, nowait=False, arguments=None) —

*Both the dest_exch and source_exch must already exist. Blank exchange names mean the default
exchange.

11

http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/functions.html#bool

amqpy, Release 0.13.1

*A server MUST allow and ignore duplicate bindings - that is, two or more bind methods for a specific
exchanges, with identical arguments - without treating these as an error.

*A server MUST allow cycles of exchange bindings to be created including allowing an exchange to
be bound to itself.

*A server MUST not deliver the same message more than once to a destination exchange, even if the
topology of exchanges and bindings results in multiple (even infinite) routes to that exchange.
Parameters

* dest_exch (str)— name of destination exchange to bind
* source_exch (st r)—name of source exchange to bind

* routing_ key (str)-—routing key for the binding (note: not all exchanges use a routing
key)

* nowait (bool) — if set, the server will not respond to the method and the client should
not wait for a reply

* arguments (dict) — binding arguments, specific to the exchange class

exchange_declare (exchange, exch_type, passive=False, durable=False, auto_delete=True,

nowait=False, arguments=None) — None
Declare exchange, create if needed

*Exchanges cannot be redeclared with different types. The client MUST not attempt to redeclare an
existing exchange with a different type than used in the original Exchange.Declare method.

*This method creates an exchange if it does not already exist, and if the exchange exists, verifies that it
is of the correct and expected class.

*The server must ignore the durable field if the exchange already exists.
*The server must ignore the auto_delete field if the exchange already exists.

*If nowait is enabled and the server could not complete the method, it will raise a channel or connection
exception.

earguments is ignored if passive is True.

Parameters
* exchange (st r) — exchange name
* exch_type (str)— exchange type (direct, fanout, etc.)

* passive (bool) — do not create exchange; client can use this to check whether an ex-
change exists

* durable (bool)— mark exchange as durable (remain active after server restarts)
* auto_delete (bool)— auto-delete exchange when all queues have finished using it

* nowait (bool) — if set, the server will not respond to the method and the client should
not wait for a reply

* arguments (dict) — exchange declare arguments
Raises
* AccessRefused - if attempting to declare an exchange with a reserved name (amq.*)

* NotFound - if passive is enabled and the exchange does not exist

12 Chapter 2. amqpy.channel module

http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/stdtypes.html#dict
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/stdtypes.html#dict

amqgpy, Release 0.13.1

Returns None
exchange_delete (exchange, if_unused=False, nowait=False) — None
Delete an exchange
This method deletes an exchange.

oIf the exchange does not exist, the server must raise a channel exception. When an exchange is deleted,
all queue bindings on the exchange are cancelled.

oIf if_unused is set, and the exchange has queue bindings, the server must raise a channel exception.

Parameters
* exchange (st r)—exchange name
e if unused (bool) - delete only if unused (has no queue bindings)

* nowait (bool) — if set, the server will not respond to the method and the client should
not wait for a reply

Raises
* NotFound - if exchange with exchange does not exist

* PreconditionFailed - if attempting to delete a queue with bindings and if_unused
is set

Returns None
exchange_unbind (dest_exch, source_exch="", routing_key="", nowait=False, arguments=None) —
None

Unbind an exchange from an exchange

oIf the unbind fails, the server must raise a connection exception. The server must not attempt
to unbind an exchange that does not exist from an exchange.

*Blank exchange names mean the default exchange.

Parameters
* dest_exch (str) — destination exchange name
* source_exch (str) - source exchange name
* routing_key (st r)—routing key to unbind

* nowait (bool) — if set, the server will not respond to the method and the client should
not wait for a reply

* arguments (dict) — binding arguments, specific to the exchange class

flow (active) — None
Enable/disable flow from peer

This method asks the peer to pause or restart the flow of content data. This is a simple flow-control
mechanism that a peer can use to avoid overflowing its queues or otherwise finding itself receiving more
messages than it can process. Note that this method is not intended for window control The peer that
receives a request to stop sending content should finish sending the current content, if any, and then wait
until it receives a Flow restart method.

Parameters active (bool) — True: peer starts sending content frames; False: peer stops
sending content frames

13

http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/stdtypes.html#dict
http://docs.python.org/3.4/library/functions.html#bool

amqpy, Release 0.13.1

queue_bind (queue, exchange="", routing_key="*, nowait=False, arguments=None) — None
Bind queue to an exchange

This method binds a queue to an exchange. Until a queue is bound it will not receive any messages. In a
classic messaging model, store-and-forward queues are bound to a dest exchange and subscription queues
are bound to a dest_wild exchange.

*The server must allow and ignore duplicate bindings without treating these as an error.
o[f a bind fails, the server must raise a connection exception.

*The server must not allow a durable queue to bind to a transient exchange. If a client attempts this,
the server must raise a channel exception.

*The server should support at least 4 bindings per queue, and ideally, impose no limit except as defined
by available resources.

o[f the client did not previously declare a queue, and the gueue is empty, the server must raise a
connection exception with reply code 530 (not allowed).

*If queue does not exist, the server must raise a channel exception with reply code 404 (not found).

oIf exchange does not exist, the server must raise a channel exception with reply code 404 (not found).

Parameters

* queue (str)— name of queue to bind; blank refers to the last declared queue for this
channel

* exchange (st r)—name of exchange to bind to
e routing_key (st r) - routing key for the binding

* nowait (bool) — if set, the server will not respond to the method and the client should
not wait for a reply

* arguments (dict) - binding arguments, specific to the exchange class
queue_declare (queue="‘, passive=False, durable=False, exclusive=False, auto_delete=True,

nowait=False, arguments=None) — queue_declare_ok_t or None
Declare queue, create if needed

This method creates or checks a queue. When creating a new queue the client can specify various properties
that control the durability of the queue and its contents, and the level of sharing for the queue. A tuple
containing the queue name, message count, and consumer count is returned, which is essential for declaring
automatically named queues.

oIf passive is specified, the server state is not modified (a queue will not be declared), and the server
only checks if the specified queue exists and returns its properties. If the queue does not exist, the
server must raise a 404 NOT FOUND channel exception.

*The server must create a default binding for a newly-created queue to the default exchange, which is
an exchange of type ‘direct’.

*Queue names starting with ‘amq.” are reserved for use by the server. If an attempt is made to declare
a queue with such a name, and the passive flag is disabled, the server must raise a 403 ACCESS
REFUSED connection exception.

*The server must raise a 405 RESOURCE LOCKED channel exception if an attempt is made to access
a queue declared as exclusive by another open connection.

*The server must ignore the auto_delete flag if the queue already exists.

RabbitMQ supports the following useful additional arguments:

14 Chapter 2. amqpy.channel module

http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/stdtypes.html#dict

amqgpy, Release 0.13.1

*x-max-length (int): maximum queue size
— Queue length is a measure that takes into account ready messages, ignoring unacknowledged
messages and message size. Messages will be dropped or dead-lettered from the front of the
queue to make room for new messages once the limit is reached.
Parameters
* queue (str)— queue name; leave blank to let the server generate a name automatically

* passive (bool) — do not create queue; client can use this to check whether a queue
exists

e durable (bool)— mark as durable (remain active after server restarts)

* exclusive (bool) — mark as exclusive (can only be consumed from by this connec-
tion); implies auto_delete

* auto_delete (bool) — auto-delete queue when all consumers have finished using it

* nowait (bool) — if set, the server will not respond to the method and the client should
not wait for a reply

* arguments (dict) — exchange declare arguments
Raises
* NotFound - if passive is enabled and the queue does not exist
* AccessRefused - if an attempt is made to declare a queue with a reserved name

* ResourceLocked - if an attempt is made to access an exclusive queue declared by
another open connection

Returns queue_declare_ok_t(queue, message_count, consumer_count), or None if nowait
Return type queue_declare_ok_t or None
queue_delete (queue="", if_ unused=False, if empty=False, nowait=False) — int
Delete a queue

This method deletes a queue. When a queue is deleted any pending messages are sent to a dead-letter
queue if this is defined in the server configuration, and all consumers on the queue are cancelled.

Parameters

* queue (str)—name of queue to delete, empty string refers to last declared queue on this
channel

* if unused (bool) — delete only if unused (has no consumers); raise a channel excep-
tion otherwise

* if empty (bool)— delete only if empty; raise a channel exception otherwise

* nowait (bool) — if set, the server will not respond to the method and the client should
not wait for a reply

Raises

* NotFound - if queue does not exist

* PreconditionFailed - if if_unused or if_empty conditions are not met
Returns number of messages deleted

Return type int

15

http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/stdtypes.html#dict
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#int

amqpy, Release 0.13.1

queue_purge (queue="‘, nowait=False) — int or None
Purge a queue

This method removes all messages from a queue. It does not cancel consumers. Purged messages are
deleted without any formal “undo” mechanism.

*On transacted channels the server MUST not purge messages that have already been sent to a client
but not yet acknowledged.

*If nowait is False, this method returns a message count.

Parameters

* queue (str)— queue name to purge; leave blank to refer to last declared queue for this
channel

* nowait (bool) — if set, the server will not respond to the method and the client should
not wait for a reply

Returns message count (if nowait is False)
Return type int or None
queue_unbind (queue, exchange, routing_key="", nowait=False, arguments=None) — None
Unbind a queue from an exchange
This method unbinds a queue from an exchange.
o[f a unbind fails, the server MUST raise a connection exception.
*The client must not attempt to unbind a queue that does not exist.

*The client must not attempt to unbind a queue from an exchange that does not exist.

Parameters

* queue (str)— name of queue to unbind, leave blank to refer to the last declared queue
on this channel

* exchange (st r)—name of exchange to unbind, leave blank to refer to default exchange
* routing_key (st r)—routing key of binding
* arguments (dict)— binding arguments, specific to the exchange class
tx_commit () — None
Commit the current transaction

This method commits all messages published and acknowledged in the current transaction. A new trans-
action starts immediately after a commit.

tx rollback () — None
Abandon the current transaction

This method abandons all messages published and acknowledged in the current transaction. A new trans-
action starts immediately after a rollback.

tx select () — None
Select standard transaction mode

This method sets the channel to use standard transactions. The client must use this method at least once
on a channel before using the Commit or Rollback methods.

16 Chapter 2. amqpy.channel module

http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/stdtypes.html#str
http://docs.python.org/3.4/library/stdtypes.html#dict

amqgpy, Release 0.13.1

The channel must not be in publish acknowledge mode. If it is, the server raises a
PreconditionFailed exception and closes the channel. Note that amqpy will automatically reopen
the channel, at which point this method can be called again successfully.

Raises PreconditionFailed - if the channel is in publish acknowledge mode

17

amqpy, Release 0.13.1

18 Chapter 2. amgpy.channel module

CHAPTER 3

amgpy.message module

Messages for AMQP

class amgpy .message .Message (amgpy.message.GenericContent)
Bases: amgpy .message.GenericContent

A Message for use with the Channel.basic_* methods

application_headers
@property

Get application headers
Returns application headers
Return type dict

body
Message body (bytes or str or unicode)

channel
Associated channel, set after receiving a message (amqpy.channel.Channel)

delivery_info
Delivery info, set after receiving a message (dict)

delivery_ tag
@property

Get delivery tag
Returns delivery tag
Return type int

__init__ (body=’‘, channel=None, **properties)
If body is a str, then content_encoding will automatically be set to “‘UTF-8’, unless explicitly specified.

Example:

msg = Message ('hello world', content_type='text/plain', application_headers={'floo"':

Parameters
* body (bytes or str or unicode)-—message body
¢ channel (amgpy.channel.Channel) — associated channel

* properties —

19

7})

http://docs.python.org/3.4/library/stdtypes.html#dict
http://docs.python.org/3.4/library/functions.html#int

amqpy, Release 0.13.1

— content_type (shortstr): MIME content type
— content_encoding (shortstr): MIME content encoding

— application_headers: (table): Message header field table: dict[str,
strlintiDecimalldatetimeldict]

— delivery_mode: (octet): Non-persistent (1) or persistent (2)
— priority (octet): The message priority, 0 to 9
— correlation_id (shortstr) The application correlation identifier
— reply_to (shortstr) The destination to reply to
— expiration (shortstr): Message expiration specification
— message_id (shortstr): The application message identifier
— timestamp (datetime.datetime): The message timestamp
— type (shortstr): The message type name
— user_id (shortstr): The creating user id
— app_id (shortstr): The creating application id
— cluster_id (shortstr): Intra-cluster routing identifier
ack () — None
Acknowledge message
This is a convenience method which calls self.channel .basic_ack ()

reject (requeue) — None
Reject message

This is a convenience method which calls self.channel .basic_reject ()

Parameters requeue (bool) —requeue if True else discard the message

20 Chapter 3. amqpy.message module

http://docs.python.org/3.4/library/functions.html#bool

CHAPTER 4

amgpy.consumer module

21

amqpy, Release 0.13.1

22 Chapter 4. amgpy.consumer module

CHAPTER 5

amqpy.spec module

amgpy . spec .FRAME_MIN_SIZE = 4096
The default, minimum frame size that both the client and server must be able to handle

class amgpy . spec .FrameType
Bases: object

This class contains frame-related constants

METHOD, HEADER, BODY, and HEARTBEAT are all frame type constants which make up the first byte of
every frame. The END constant is the termination value which is the last byte of every frame.

class amgpy . spec.basic_return_t (tuple)
Bases: tuple

namedtuple basic_return_t(reply_code, reply_text, exchange, routing_key, message)

class amgpy . spec.method_t (fuple)
Bases: tuple

namedtuple method_t(class_id, method_id)

class amgpy . spec.queue_declare_ok_t (tuple)
Bases: tuple

namedtuple queue_declare_ok_t(queue, message_count, consumer_count)

23

http://docs.python.org/3.4/library/functions.html#object
http://docs.python.org/3.4/library/stdtypes.html#tuple
http://docs.python.org/3.4/library/stdtypes.html#tuple
http://docs.python.org/3.4/library/stdtypes.html#tuple

amqpy, Release 0.13.1

24 Chapter 5. amqpy.spec module

CHAPTER 6

amqgpy.proto module

High-level representations of AMQP protocol objects

class amgpy .proto.Frame
Bases: object

AMQP frame

A Frame represents the lowest-level packet of data specified by the AMQP 0.9.1 wire-level protocol. All meth-
ods and messages are packed into one or more frames before being sent to the peer.

The format of the AMQP frame is as follows:

offset: 0 1 3 7 size+7 size+8
Fo————— Fo———— Fo— o o +
| type | channel | size | —-—— payload -—- | frame-end |
o= o o o e +
size (bytes) 1 2 4 size 1
channel
@property

Get frame channel number
Returns channel number
Return type int

data
raw frame data; can be manually manipulated at any time

Type bytearray

frame_type
@property

Get frame type
Returns frame type
Return type int

payload
@property

Get frame payload
Returns payload
Return type bytearray

25

http://docs.python.org/3.4/library/functions.html#object
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bytearray

amqpy, Release 0.13.1

payload_size
@property

Get frame payload size
Returns payload size
Return type int

__init__ (frame_type=None, channel=0, payload=>b’")
Create new Frame

Leave all three parameters as default to create an empty frame whose data can be manually written to

afterwards.
Parameters
» frame_type (int) - frame type
¢ channel (int) - associated channel number

* payload (bytes or bytearray) - frame payload

class amgpy .proto.Method

Bases: object

AMOQP method

The AMQP 0.9.1 protocol specifies communication as sending and receiving “methods”. Methods consist of
a “class-id” and “method-id” and are represented by a method_t namedtuple in amqgpy. Methods are packed
into the payload of a FrameType. METHOD frame, and most methods can be fully sent in a single frame. If the
method specified to be carrying content (such as a message), the method frame is followed by additional frames:

a FrameType. HEADER frame, then zero or more FrameType.BODY frames.
The format of the FrameType. METHOD frame’s payload is as follows:

offset: 0 2 4
o o o = -
| class—-id | method-id | arguments...
o R o = -
size (bytes): 2 2 variable

The format of the FrameType. HEADER frame’s payload is as follows:

offset: 0 2 4 12 14
fommmm fommm———— fom o pomm
| class-id | weight | body size | property flags | property list...
Fom e dom Fom Fom
size (bytes): 2 2 8 2 variable

The format of the FrameType.BODY frame’s payload is simply raw binary data of the message body.
channel_id
Type int

complete
@property

Check if the message that is carried by this method has been completely assembled, i.e. the expected

number of bytes have been loaded
This method is intended to be called when constructing a Method from incoming data.

Returns True if method is complete, else False

26

Chapter 6. amqpy.proto module

http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#object

amqgpy, Release 0.13.1

Return type bool
content
Type Message or None
method_type
Type amgpy.spec.method_t
__init__ (method_type=None, args=None, content=None, channel_id=None)
Parameters
* method_type (method_t)— method type
* args (AMOPReader or AMQOPWriter or None)-—method args
* content (Message or None) - content
* channel_id (int or None) - the associated channel ID, if any

dump_body_ frame (chunk_size) — generator[amqpy.proto.Frame]
Create a body frame

This method is intended to be called when sending frames for an already-completed Method.

Parameters chunk_size (int) — body chunk size in bytes; this is typically the maximum
frame size - 8

Returns generator of FrameType.BODY frames
Return type generator[amgpy.proto.Frame]

dump_header_frame () — amqgpy.proto.Frame
Create a header frame

This method is intended to be called when sending frames for an already-completed Method.
Returns FrameType. HEADER frame
Return type amgpy.proto.Frame

dump_method_frame () — amqgpy.proto.Frame
Create a method frame

This method is intended to be called when sending frames for an already-completed Method.
Returns FrameType. METHOD frame
Return type amgpy.proto.Frame

load_body_frame (frame) — None
Add content to partial method

This method is intended to be called when constructing a Method from incoming data.
Parameters frame (amgpy.proto.Frame)— FrameType.BODY frame

load_header_frame (frame) — None
Add header to partial method

This method is intended to be called when constructing a Method from incoming data.

Parameters frame (amgpy.proto.Frame)— FrameType. HEADER frame

27

http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#int

amqpy, Release 0.13.1

load_method_frame (frame) — None
Load method frame payload data

This method is intended to be called when constructing a Method from incoming data.
After calling, self.method_type, self.args, and self.channel_id will be loaded with data from the frame.

Parameters frame (amgpy.proto.Frame)— FrameType. METHOD frame

28 Chapter 6. amqpy.proto module

CHAPTER 7

amqgpy.exceptions module

AMOQP uses exceptions to handle errors:
* Any operational error (message queue not found, insufficient access rights, etc.) results in a channel exception.
e Any structural error (invalid argument, bad sequence of methods, etc.) results in a connection exception.

According to the AMQP specification, an exception closes the associated channel or connection, and returns a reply
code and reply text to the client. However, amqpy will automatically re-open the channel after a channel error.

exception amgpy .exceptions.Timeout
Bases: TimeoutError

General AMQP operation timeout

exception amgpy .exceptions.ContentTooLarge (reply_text=None, method_type=None,
method_name=None, reply_code=None, chan-
nel_id=None)
Bases: amgpy .exceptions.RecoverableChannelError
The client attempted to transfer content larger than the server could accept at the present time. The client may
retry at a later time.

exception amgpy . exceptions.NoConsumers (reply_text=None, method_type=None,
method_name=None, reply_code=None, chan-
nel_id=None)
Bases: amgpy .exceptions.RecoverableChannelError
When the exchange cannot deliver to a consumer when the immediate flag is set. As a result of pending data on
the queue or the absence of any consumers of the queue.

exception amgpy . exceptions.ConnectionForced (reply_text=None, method_type=None,
method_name=None, reply_code=None, chan-
nel_id=None)

Bases: amgpy .exceptions.RecoverableConnectionError
An operator intervened to close the connection for some reason. The client may retry at some later date.

exception amgpy . exceptions.InvalidPath (reply_text=None, method_type=None,
method_name=None, reply_code=None, chan-
nel_id=None)
Bases: amgpy .exceptions.IrrecoverableConnectionError

The client tried to work with an unknown virtual host.

exception amgpy . exceptions.AccessRefused (reply_text=None, method_type=None,
method_name=None, reply_code=None, chan-

nel_id=None)
Bases: amgpy .exceptions.IrrecoverableChannelError

29

http://docs.python.org/3.4/library/exceptions.html#TimeoutError

amqpy, Release 0.13.1

The client attempted to work with a server entity to which it has no access due to security settings.

exception amgpy . exceptions.NotFound (reply_text=None, method_type=None, method_name=None,

reply_code=None, channel_id=None)
Bases: amgpy .exceptions.IrrecoverableChannelError

The client attempted to work with a server entity that does not exist.

exception amgpy . exceptions .ResourceLocked (reply_text=None, method_type=None,
method_name=None, reply_code=None, chan-
nel_id=None)
Bases: amgpy .exceptions.RecoverableChannelError
The client attempted to work with a server entity to which it has no access because another client is working
with it.

exception amgpy .exceptions.PreconditionFailed (reply_text=None, method_type=None,
method_name=None, reply_code=None,

channel_id=None)
Bases: amgpy.exceptions.IrrecoverableChannelError

The client requested a method that was not allowed because some precondition failed.

exception amgpy . exceptions.FrameError (reply_text=None, method_type=None,
method_name=None, reply_code=None, chan-
nel_id=None)

Bases: amgpy .exceptions.IrrecoverableConnectionError

The sender sent a malformed frame that the recipient could not decode. This strongly implies a programming
error in the sending peer.

exception amgpy .exceptions.FrameSyntaxError (reply_text=None, method_type=None,
method_name=None, reply_code=None, chan-
nel_id=None)

Bases: amgpy .exceptions.IrrecoverableConnectionError

The sender sent a frame that contained illegal values for one or more fields. This strongly implies a programming
error in the sending peer.

exception amgpy . exceptions.InvalidCommand (reply_text=None, method_type=None,
method_name=None, reply_code=None, chan-
nel_id=None)
Bases: amgpy .exceptions.IrrecoverableConnectionError
The client sent an invalid sequence of frames, attempting to perform an operation that was considered invalid by
the server. This usually implies a programming error in the client.

exception amgpy . exceptions.ChannelNotOpen (reply_text=None, method_type=None,
method_name=None, reply_code=None, chan-
nel_id=None)
Bases: amgpy.exceptions.IrrecoverableConnectionError
The client attempted to work with a channel that had not been correctly opened. This most likely indicates a
fault in the client layer.

exception amgpy . exceptions.UnexpectedFrame (reply_text=None, method_type=None,
method_name=None, reply_code=None, chan-
nel_id=None)
Bases: amgpy .exceptions.IrrecoverableConnectionError
The peer sent a frame that was not expected, usually in the context of a content header and body. This strongly
indicates a fault in the peer’s content processing.

30 Chapter 7. amqpy.exceptions module

amqgpy, Release 0.13.1

exception amgpy . exceptions.ResourceError (reply_text=None, method_type=None,
method_name=None, reply_code=None, chan-
nel_id=None)
Bases: amgpy .exceptions.RecoverableConnectionError
The server could not complete the method because it lacked sufficient resources. This may be due to the client
creating too many of some type of entity.

exception amgpy . exceptions.NotAllowed (reply_text=None, method_type=None,
method_name=None, reply_code=None, chan-
nel_id=None)

Bases: amgpy .exceptions.IrrecoverableConnectionError

The client tried to work with some entity in a manner that is prohibited by the server, due to security settings or
by some other criteria.

exception amgpy . exceptions.AMQPNot ImplementedError (reply_text=None, method_type=None,
method_name=None, re-

ply_code=None, channel_id=None)
Bases: amgpy .exceptions.IrrecoverableConnectionError

The client tried to use functionality that is not implemented in the server.

exception amgpy .exceptions.InternalError (reply_text=None, method_type=None,
method_name=None, reply_code=None, chan-
nel_id=None)
Bases: amgpy .exceptions.IrrecoverableConnectionError
The server could not complete the method because of an internal error. The server may require intervention by
an operator in order to resume normal operations.

31

amqpy, Release 0.13.1

32 Chapter 7. amgpy.exceptions module

CHAPTER 8

Introduction

amgqpy is a pure-Python AMQP 0.9.1 client library for Python >= 3.2.0 (including PyPy3) with a focus on:
* stability and reliability
» well-tested and thoroughly documented code
* clean, correct design
* 100% compliance with the AMQP 0.9.1 protocol specification

It has very good performance, as AMQP 0.9.1 is a very efficient binary protocol, but does not sacrifice clean design
and testability to save a few extra CPU cycles.

This library is actively maintained and has a zero bug policy. Please submit issues and pull requests, and bugs will be
fixed immediately.

The current API is not final, but will progressively get more stable as version 1.0.0 is approached.

8.1 Guarantees

This library makes the following guarantees:
» Semantic versioning is strictly followed
e Compatible with Python >=3.2.0 and PyPy3 >=2.3.1 (Python 3.2.5)
* AMQP 0.9.1 compliant

33

http://semver.org

amqpy, Release 0.13.1

34 Chapter 8. Introduction

CHAPTER 9

Quickstart

amgqpy is easy to install, and there are no dependencies:

pip install amgpy

amgqpy is easy to use:

from amgpy import Connection,
conn = Connection ()
ch = conn.channel ()

declare an exchange and queue,

ch.exchange_declare ('test.exchange',

ch.queue_declare ('test.qg'")
ch.queue_bind('test.q',

publish a few messages, which

ch.basic_publish (Message ('hello world 1'), exchange='test.exchange', routing_key='test.
ch.basic_publish (Message ('hello world 2'), exchange='test.exchange', routing_key='test.
ch.basic_publish (Message ('hello world 3'), exchange='test.exchange', routing_key='test.(d

get a message from the queue
msg = ch.basic_get ('test.q")

don't forget to acknowledge it
msg.ack ()

Message,

connect to guest:guest@localhost:5672 by default

and bind the queue to the exchange

exchange="'test.exchange',

will get routed to the queue bound to the routing key

AbstractConsumer, Timeout

'"direct')

routing_key='test.q')

"

Let’s create a consumer:

class Consumer (AbstractConsumer) :
def run(self, msg: Message) :

print ('Received a message:

msg.ack ()

consumer = Consumer (ch,

consumer.declare ()

'test.q')

wait for events,
while True:

conn.drain_events (timeout=None)

which will receive delivered messages and call any consumer callback

{}'".format (msg.body))

35

amqpy, Release 0.13.1

36 Chapter 9. Quickstart

cHAPTER 10

Notes

Any AMQP 0.9.1-compliant server is supported, but RabbitMQ is our primary target. Apache Qpid is confirmed to
work, but only with “anonymous” authentication. A CRAM-MDS5 auth mechanism is currently being developed and
will be released shortly.

37

amqpy, Release 0.13.1

38 Chapter 10. Notes

CHAPTER 11

Features

* Draining events from multiple channels Connection.drain_events ()

SSL is fully supported, it is highly recommended to use SSL when connecting to servers over the Internet.
 Support for timeouts
* Support for manual and automatic heartbeats
* Fully thread-safe. Use one global connection and open one channel per thread.

Supports RabbitMQ extensions:

¢ Publisher confirms: enable with Channel.confirm_select (), then use
Channel.basic_publish_confirm

» Exchange to exchange bindings: Channel .exchange_bind () and Channel.exchange_unbind ()

* Consumer cancel notifications: by default a cancel results in ChannelError being raised, but not if an
on_cancel callback is passed to basic_consume

39

amqpy, Release 0.13.1

40 Chapter 11. Features

CHAPTER 12

Testing

amgpy uses the excellent tox and pytest frameworks. To run all tests, simply install a local RabbitMQ server. No
additional configuration is necessary for RabbitMQ. Then run in the project root:

$ pip install pytest
$ py.test

41

amqpy, Release 0.13.1

42 Chapter 12. Testing

CHAPTER 13

Indices and Tables

¢ genindex
* modindex

e search

43

amqpy, Release 0.13.1

44 Chapter 13. Indices and Tables

Python Module Index

amgpy .
.connection,3

amgpy

amgpy .
amgpy .

amgpy .
.proto, 25

amgpy

amgpy .

channel, 7
consumer, 21
exceptions, 29

message, 19

spec, 23

45

amqpy, Release 0.13.1

46 Python Module Index

Index

Symbols

__init__() (amqgpy.channel.Channel method), 7
__init__() (amqgpy.connection.Connection method), 3
__init__() (amqgpy.message.Message method), 19
__init__() (amqpy.proto.Frame method), 26
__init__() (amgpy.proto.Method method), 27

A

AccessRefused, 29

ack() (amqpy.message.Message method), 20

active (amgpy.channel.Channel attribute), 7

AMQPNotImplementedError, 31

amgpy.channel (module), 7

amgpy.connection (module), 3

amgpy.consumer (module), 21

amgpy.exceptions (module), 29

amgpy.message (module), 19

amgpy.proto (module), 25

amgpy.spec (module), 23

application_headers (amqpy.message.Message attribute),
19

B

basic_ack() (amgpy.channel.Channel method), 8
basic_cancel() (amgpy.channel.Channel method), 8
basic_consume() (amqgpy.channel.Channel method), 8
basic_get() (amgpy.channel.Channel method), 9
basic_publish() (amqpy.channel.Channel method), 9
basic_qos() (amgpy.channel.Channel method), 10
basic_recover() (amgpy.channel.Channel method), 10
basic_recover_async() (amqgpy.channel.Channel method),
10
basic_reject() (amgpy.channel.Channel method), 10
basic_return_t (class in amqpy.spec), 23
body (amqpy.message.Message attribute), 19

C

CH_MODE_CONFIRM
attribute), 7

(amgpy.channel.Channel

CH_MODE_NONE (amqpy.channel.Channel attribute),
7

CH_MODE_TX (amgpy.channel.Channel attribute), 7

channel (amqpy.message.Message attribute), 19

channel (amqpy.proto.Frame attribute), 25

Channel (class in amqpy.channel), 7

channel() (amqgpy.connection.Connection method), 4

channel_id (amqpy.proto.Method attribute), 26

ChannelNotOpen, 30

channels (amqgpy.connection.Connection attribute), 3

close() (amgpy.channel.Channel method), 11

close() (amgpy.connection.Connection method), 4

complete (amqpy.proto.Method attribute), 26

confirm_select() (amgpy.channel.Channel method), 11

connect() (amgpy.connection.Connection method), 4

connected (amqpy.connection.Connection attribute), 3

Connection (class in amqpy.connection), 3

ConnectionForced, 29

content (amqgpy.proto.Method attribute), 27

ContentTooLarge, 29

D

data (amqpy.proto.Frame attribute), 25
delivery_info (amqpy.message.Message attribute), 19
delivery_tag (amqpy.message.Message attribute), 19
drain_events() (amgpy.connection.Connection method), 5
dump_body_frame() (amgpy.proto.Method method), 27
dump_header_frame() (amgpy.proto.Method method), 27
dump_method_frame() (amqpy.proto.Method method),
27

E

exchange_bind() (amqpy.channel.Channel method), 11
exchange_declare() (amqgpy.channel.Channel method), 12
exchange_delete() (amgpy.channel.Channel method), 13
exchange_unbind() (amgpy.channel.Channel method), 13

flow() (amgpy.channel.Channel method), 13
Frame (class in amqpy.proto), 25

47

amqpy, Release 0.13.1

FRAME_MIN_SIZE (in module amqpy.spec), 23
frame_type (amqpy.proto.Frame attribute), 25
FrameError, 30

FrameSyntaxError, 30

FrameType (class in amqpy.spec), 23

InternalError, 31

InvalidCommand, 30

InvalidPath, 29

is_alive() (amqgpy.connection.Connection method), 5
is_open (amqpy.channel.Channel attribute), 7

L

load_body_frame() (amqpy.proto.Method method), 27
load_header_frame() (amgpy.proto.Method method), 27
load_method_frame() (amqpy.proto.Method method), 27
loop() (amgpy.connection.Connection method), 5

M

Message (class in amqpy.message), 19

Method (class in amqpy.proto), 26

method_t (class in amqgpy.spec), 23
method_type (amgpy.proto.Method attribute), 27
mode (amgpy.channel.Channel attribute), 7

N

NoConsumers, 29
NotAllowed, 31
NotFound, 30

P

payload (amqpy.proto.Frame attribute), 25
payload_size (amqpy.proto.Frame attribute), 25
PreconditionFailed, 30

Q

queue_bind() (amgpy.channel.Channel method), 13
queue_declare() (amqpy.channel.Channel method), 14
queue_declare_ok_t (class in amqpy.spec), 23
queue_delete() (amgpy.channel.Channel method), 15
queue_purge() (amqgpy.channel.Channel method), 15
queue_unbind() (amqpy.channel.Channel method), 16

R

reject() (amqgpy.message.Message method), 20
ResourceError, 30

ResourceLocked, 30

returned_messages (amgpy.channel.Channel attribute), 7

S

send_heartbeat()
method), 5

(amgpy.connection.Connection

server_capabilities
attribute), 3
sock (amgpy.connection.Connection attribute), 3

T

Timeout, 29

transport (amgpy.connection.Connection attribute), 3
tx_commit() (amqpy.channel.Channel method), 16
tx_rollback() (amqgpy.channel.Channel method), 16
tx_select() (amgpy.channel.Channel method), 16

U

UnexpectedFrame, 30

(amgpy.connection.Connection

48

Index

	amqpy.connection module
	amqpy.channel module
	amqpy.message module
	amqpy.consumer module
	amqpy.spec module
	amqpy.proto module
	amqpy.exceptions module
	Introduction
	Guarantees

	Quickstart
	Notes
	Features
	Testing
	Indices and Tables
	Python Module Index

